K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 3 2019

a) Gọi O là tâm của đáy ABCD, M là giao điểm của SO và mặt phẳng (P). Ta có: OM = 2(cm).

Ta tính được O B   =   2 2 c m rồi suy ra SO = 5 (cm)

Từ đó chiều cao cần tìm là: SM = SO - OM 3 (cm)

b) Gọi I là trung điểm của BC. E, F, J lần lượt là giao điểm của SB, SC, SI với mặt phẳng (p).

13 tháng 5 2017

\(a,S_{xp}=4.\dfrac{a+2a}{2}.a=6a^2\)

\(b,\)Vẽ một mặt bên. Ta có:\(AH=\dfrac{AB-A^'B^'}{2}=\dfrac{2a-a}{2}=\dfrac{a}{2}\)

Trong tamn giác vuông A'HA:

\(AA^'=\sqrt{a^2+\left(\dfrac{a}{2}\right)^2}=\sqrt{\dfrac{5a^2}{4}}\)

Từ đó tính tiếp sẽ ra chiều cao hình chóp

Đáp số :Độ dài cạnh bên là :\(\sqrt{\dfrac{5a^2}{4}}\)

Chiều cao chóp cụt :\(\sqrt{\dfrac{3a^2}{4}}\)

9 tháng 6 2018

25 tháng 6 2019

Xét hình chóp cụt đều ABCD.A'B'C'D' như hình bs.19.

Gọi M, M' thứ tự là trung điểm của BC, B'C'. Khi đó MM' là đường cao của hình thang cân BCC'B'.

Do đó diện tích xung quanh của hình chóp cụt đều là:

S x q  = 4.(a+b)/2.MM′=(2a+2b).MM′

Từ giả thiết ta có:

(2a+2b).MM′= a 2 + b 2  Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Dễ thấy OM // O'M' nên OM và O'M' xác định mặt phẳng (OMM'O'). Trong mặt phẳng (OMM'O'), kẻ MH ⊥ O'M'. Khi đó: HM' = O'M' – O'H = (b−a)/2

Trong tam giác vuông MHM' ta có: M M ' 2 = M H 2 + H M ' 2 = h + b - a / 2 2  (2)

Từ (1) và (2) suy ra :

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

10 tháng 5 2017

Xét hình chóp cụt đều ABCD.AB'C'D'

Gọi M ,M' thứ tự là trung điểm của BC , B'C' . Khi đó MM' là đường cao của hình thang cân BCC'B' . Do đó diện tích xung quanh của hình chóp cụt đều là :

\(S_{xq}=4.\dfrac{a+b}{2}.MM'=\left(2a+2b\right).MM'\)

Từ giả thiết , ta có :

\(\left(2a+2b\right).MM'=a^2+b^2hayMM'=\dfrac{a^2+b^2}{2\left(a+b\right)}\left(1\right)\)

Dễ thấy OM // O'M' nên OM và O'M' xác định mặt phẳng (OMM'O') . Trong mặt phẳng (OMM'O') , kẻ MH \(\perp\) O'M' . Khi đó : \(HM'=O'M'-O'H=\dfrac{b-a}{2}\)

Trong tam giác vuông MHM' ta có :

\(MM'^2=MH^2+HM'^2=h^2+\left(\dfrac{b-a}{2}\right)^2\left(2\right)\)

Từ (1) và (2) suy ra :

\(h^2+\left(\dfrac{b-a}{2}\right)^2=\dfrac{\left(a^2+b^2\right)^2}{4\left(a+b\right)^2}\)

\(\Rightarrow h^2=\dfrac{\left(a^2+b^2\right)^2-\left(b^2-a^2\right)^2}{4\left(a+b\right)^2}=\dfrac{a^2b^2}{\left(a+b\right)^2}\)

Vậy \(h=\dfrac{ab}{a+b}\)

Sxq=16*4*17/2=544cm2

Stp=544+16^2=800cm2

V=1/3*16^2*15=1280cm3

31 tháng 7 2023

Nữa chu vi đáy của hình chóp đều:

\(16\cdot4:2=32\left(cm\right)\)

Diện tích xung quanh của hình chóp đều:

\(S_{xq}=32\cdot17=544\left(cm^2\right)\)

Diện tích mặt đáy của hình chóp đều:

\(S_đ=16^2=256\left(cm^2\right)\)

Diện tích toàn phần của hình chóp đều:

\(S_{tp}=S_đ+S_{xq}=544+256=800\left(cm^2\right)\)

Thể tích của hình chóp đều:
\(V=\dfrac{1}{3}\cdot256\cdot15=1280\left(cm^3\right)\)

29 tháng 3 2018

Một mặt bên của hình chóp cụt là một hình thang có hai đáy là a và 2a; đường cao bằng a.

Diện tích mặt bên là:

S = (a+ 2a): 2.a =3/2 a 2 (đvtt)

Diện tích xung quanh hình nón cụt:

S x q  = 4.3/2  a 2  = 6 a 2  (đvtt)

28 tháng 9 2017

a) Chân đường cao H của hình chóp S.ABC trùng với trọng tâm của tam giác ABC.

Gọi M là trung điểm của BC

Tam giác ABC có

b) Tam giác SAM cân ở M nên

 

Diện tích xung quanh của hình chóp:

 

c) Diện tích toàn phần của hình chóp: 

d) Thể tích của hình chóp