\(SA=a\sqrt{3}\). ABCD là hình vuông cạnh a...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 4 2021

undefined

a: Qua S kẻ đường Sx song song SD

=>Sx vuông góc SA

SC vuông góc CD

=>SC vuông góc Sx

((SAB);(SCD))=góc ASC

b: (SBD) căt (SAB)=SB

Kẻ DA vuông góc AB

mà DA vuông góc SA

nên DA vuông góc (SAB)

=>DA vuông góc SB

Kẻ AK vuông góc SB

=>((SBD);(SAB))=góc AKD

c: (SBC) giao (SCD)=SC
Kẻ BH vuông góc SC

Qua H kẻ HF//CD

=>HF vuông góc SC

=>((SBC);(SCD))=góc BHF

a: CD vuông góc AD

CD vuông góc SA

=>CD vuông góc (SAD)

=>(SAD) vuông góc (SCD)

b: (SCD) giao (ABCD)=CD

CD vuông góc (SAD)

=>CD vuông góc SD

CD vuông góc SD

AD vuông góc CD

mà SD thuộc (SCD) và AD thuộc (ABCD)

nên ((SCD);(ABCD))=(SD;AD)=góc SDA

tan SDA=SA/AD=căn 3/2

=>góc SDA=41 độ

23 tháng 5 2016

a. Ta có : \(\begin{cases}AB\perp BC\left(ABCDvuong\right)\\SA\perp BC\left(SA\perp\left(ABCD\right)\right)\end{cases}\)  \(\Rightarrow BC\perp\left(SAB\right)\) mà \(SB\subset\left(SAB\right)\) nên \(BC\perp SB\) Vậy \(\Delta SBC\left(\perp B\right)\)

tương tự ta có : \(\begin{cases}SA\perp DC\\AD\perp DC\end{cases}\) \(\Rightarrow DC\perp\left(SAD\right)\) mà \(SD\subset\left(SAD\right)\) nên \(SD\perp DC\) Vậy \(\Delta SDC\left(\perp D\right)\)

ta có \(SA\perp AD\) nên \(\Delta SAD\left(\perp A\right)\) 

Có \(SA\perp AB\) nên \(\Delta SAB\left(\perp A\right)\)

23 tháng 5 2016

b. Ta có : \(\begin{cases}AC\perp BD\\SA\perp BD\end{cases}\) \(\Rightarrow BD\perp\left(SAC\right)\) mà \(BD\subset\left(SBD\right)\) nên \(\left(SAC\right)\perp\left(SBD\right)\)

 

a: BC vuông góc SA
BC vuông góc AB

=>CB vuông góc (SBA)

DC vuông góc AD

DC vuông góc SA

=>DC vuông góc (SAD)

=>(SDC) vuông góc (SAD)

b: (SC;(SAD))=(SC;SD)=góc CSD

\(SD=\sqrt{SA^2+AD^2}=2a\sqrt{7}\)

\(AC=\sqrt{\left(2a\right)^2+3a^2}=a\sqrt{7}\)

\(SC=\sqrt{SA^2+AC^2}=4a\sqrt{2}\)

\(cosCSD=\dfrac{SC^2+SD^2-DC^2}{2\cdot SC\cdot SD}=\dfrac{32a^2+28a^2-4a^2}{2\cdot2a\sqrt{7}\cdot4a\sqrt{2}}=\dfrac{\sqrt{14}}{4}\)

=>góc CSD=21 độ

(SC;(ABCD))=(CS;CA)=góc SCA

tan SCA=SA/AC=5/căn 7

=>góc SCA=62 độ