K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 11 2015

Áp dụng: \(A\left(x_A;y_A\right);\text{ }B\left(x_B;y_B\right)\Rightarrow AB=\sqrt{\left(x_A-x_B\right)^2+\left(y_A-y_B\right)^2}\)

Để chứng minh tam giác vuông thì dùng định lý pytago

19 tháng 8 2021
Bài 1. a) A=7/6
19 tháng 8 2021
b) √x+1 /(√x +2)(√x-1)
23 tháng 5 2018

A B C D E x y
a) Xét tứ giác BEDC có:
\(\widehat{BEC}=\widehat{BDC}\)
\(\widehat{BEC}\)và \(\widehat{BDC}\) cùng nhìn cạnh BC
=> BEDC là tứ giác nội tiếp 
b) Do BEDC là tứ giác nội tiếp nên: \(\widehat{BED}+\widehat{BCD}=180^o\)
Mà \(\widehat{BED}+\widehat{DEA}=180^o\Rightarrow\widehat{BCD}=\widehat{DEA}\)(*)
Mặt khác ta có:
\(\widehat{xAB}=\widehat{ACB}\)(cùng chắn cung AB)
hay \(\widehat{xAE}=\widehat{BCD}\)(**)
Từ (*) và (**) suy ra \(\widehat{DEA}=\widehat{xAE}\)
=> xy song song với ED (2 góc sole trong) (đpcm)

c) Do tứ giác BEDC là tứ giác nội tiếp
Mà \(\widehat{EBD}\)và \(\widehat{ECD}\)cùng nhìn cạnh ED
=> \(\widehat{EBD}=\widehat{ECD}\)(đpcm)

d) \(\widehat{BOC}=2\widehat{BAC}=120^o\)
DIện tích hình quạt BOC là: \(S_{qBOC}=\frac{\pi.R.n}{180}=\frac{\pi.2.120}{180}=\frac{4}{3}\pi\left(cm^2\right)\)
\(BC^2=OB^2+OC^2-2.OB.OC.cos120^o=12\Rightarrow BC=2\sqrt{3}\)
OH là đường cao, tam giác BOC cân tại O => BH=1/2.BC=\(\sqrt{3}\left(cm\right)\)
\(OH^2=OB^2-BH^2=2^2-3=1\Rightarrow OH=1\left(cm\right)\)
Diện tích tam giác BOC là: \(S_{\Delta BOC}=\frac{1}{2}.OH.BC=\frac{1}{2}.1.2\sqrt{3}=\sqrt{3}\left(cm^2\right)\)
=> Diện tích hình viên phân là: \(S_{vp}=S_{qBOC}-S_{\Delta BOC}=\frac{4}{3}\pi-\sqrt{3}\left(cm^2\right)\)

 

28 tháng 5 2018

A B P S D C M E F O H K

a) Ta thấy 2 tiếp tuyến tại M và B của đường tròn (O) giao nhau tại D => ^OMD=^OBD=900

=> Tứ giác MOBD nội tiếp đường tròn => ^ODM=^OBM (Cùng chắn cung OM) (1)

Ta có: ^CAM + ^MAB = 900. Mà ^MAB + ^OBM = 900 => ^CAM=^OBM (2)

Từ (1) và (2) => ^CAM=^ODM (đpcm).

b) Gọi giao điểm của tia FE là tia AB là S. Ta sẽ đi chứng minh S trùng với P.

Thật vậy: Ta gọi giao điểm của SM với AF và BE lần lượt là H và K.

Dễ thấy: BE // AF (Quan hệ song song vuông góc) 

Áp dụng hệ quả ĐL Thales, ta có các tỉ số sau: \(\frac{EK}{AH}=\frac{BE}{AF}=\frac{SB}{SA};\frac{BK}{AH}=\frac{SB}{SA}\)

\(\Rightarrow\frac{EK}{AH}=\frac{BK}{AH}\Rightarrow EK=BK\)

=>  K là trung điểm của BE (3)

Lại có: DB và DM là 2 tiếp tuyến của (O) => DB=DM => \(\Delta\)MDB cân đỉnh D

=> ^DBM=^DMB. Do ^DMB + ^DME = 900 => ^DBM + ^DME = 900

Mà ^DBM + ^DEM = 900 => ^DEM=^DME => \(\Delta\)EDM cân tại D => DE=DM

Mà DB=DM (cmt) =>  DE=DB => D là trung điểm của EB (4)

Từ (3) và (4) => D trùng với K.  Tương tự ta chứng minh được C trùng với H.

=> 3 điểm C;D;S thẳng hàng => CD cắt AB tại S 

Theo giả thiết: CD giao AB tại P => S trùng với P

Mà tia FE đi qua điểm S => FE đi qua điểm P => 3 điểm E;F;P thẳng hàng (đpcm).

12 tháng 6 2020

Bài cuối có Max nữa nhé, cần thì ib mình làm cho.

Giả sử \(c=min\left\{a;b;c\right\}\Rightarrow c\le1< 2\Rightarrow2-c>0\)

Ta có:\(P=ab+bc+ca-\frac{1}{2}abc=\frac{ab}{2}\left(2-c\right)+bc+ca\ge0\)

Đẳng thức xảy ra tại \(a=3;b=0;c=0\) và các hoán vị

18 tháng 6 2020

3/ \(P=\Sigma\frac{\left(3-a-b\right)\left(a-b\right)^2}{3}+\frac{5}{2}abc\ge0\)