Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
SABCD = ( A B + C D ) A H 2
=> AH = 2 S A B C D A B + C D = 2.54 4 + 8 = 9 (cm)
Đáp án cần chọn là: D
a) Chứng minh
DADH = DBCK (ch-gnh)
Þ DH = CK
Vận dụng nhận xét hình thang ABKH (AB//KH) có AH//BK Þ AB = HK
b) Vậy D H = C D − A B 2
c) DH = 4cm, AH = 3cm; SABCD = 30cm2
Kẻ BK ^CD tại K Þ AB = HK
S A B C D = ( 2 H K ) + 2 K C ) . A H 2 = H C . A H = 96 c m 2
Bài 8:
a: Xét ΔDBC có
E là trung điểm của BD
M là trung điểm của BC
Do đó: EM là đường trung bình của ΔDBC
Suy ra: EM//DC
b: Xét ΔAEM có
D là trung điểm của AE
DI//EM
Do đó: I là trung điểm của AM
Bài 5:
Xét ΔABC có
\(\dfrac{AE}{EB}=\dfrac{AD}{DC}\left(=1\right)\)
Do đó: DE//BC
Xét tứ giác BEDC có DE//BC
nên BEDC là hình thang
mà \(\widehat{EBC}=\widehat{DCB}\)
nên BEDC là hình thang cân
Tương tự 1B. Tính được số đo của A ^ = 135 0 , B ^ = 90 0 , C ^ = 90 0 , D ^ = 45 0 , từ đó suy ra ABCD là hình thang vuông ⇒ B C ⊥ D C . Vận dụng nhận xét hình thang ABCH (AB//CH) có hai cạnh bên song song thì hai cạnh đáy bằng nhau, để tính được CH = 3cm, từ đó suy ra DH = 1cm.
Chứng minh được DAHD vuông cân tại H Þ AH = 1cm
Þ diện tích hình thang ABCD là 3,5cm2
Lời giải:
Xét tam giác $ADH$ và $BCK$ có:
$\widehat{AHD}=\widehat{BKC}=90^0$
$\widehat{ADH}=\widehat{BCK}$ (do $ABCD$ là htc)
$AD=BC$ (do $ABCD$ là htc)
$\Rightarrow \triangle ADH=\triangle BCK$ (ch-gn)
$\Rightarrow DH=CK$
Áp dụng định lý Pitago cho tam giác $ADH$ vuông:
$AH=\sqrt{AD^2-DH^2}=\sqrt{10^2-6^2}=8$ (cm)
Từ tam giác bằng nhau ở trên suy ra $BK=AH=8$ (cm)
hình tự vẽ bn nhé!
ta có AH vuông góc DC,DC//AB=> AB vuông góc AH
tứ giác ABKH có góc AHK=BKH=AHB=90 độ
=> tứ giác ABKH là hcn
=> AH=BK=6cm
xét tam giác ADH =tam giác BCK (ch-gn)
=> DH=KC
ta có Sbhc=1/2.HC.BK=1/2.10.6=30cm^2
ta lại có HC=HK+KC
=> 10=AB+DH
Sabhd=1/2.(AB+DH).AH=1/2.10.6=30cm^2
Sabcd=Sabhd+Sbhc=30+30=60cm^2
SABCD = ( A B + C D ) A H 2
=> AH = 2 S A B C D A B + C D = 2.60 10 + 5 = 8 (cm)
Đáp án cần chọn là: A