K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2017

SABCD = ( A B + C D ) A H 2

=> AH = 2 S A B C D A B + C D = 2.54 4 + 8 = 9 (cm)

Đáp án cần chọn là: D

4 tháng 1 2020

a) Chứng minh

DADH = DBCK (ch-gnh)

Þ DH = CK

Vận dụng nhận xét hình thang ABKH (AB//KH) có AH//BK Þ AB = HK

b) Vậy D H = C D − A B 2  

c) DH = 4cm, AH = 3cm; SABCD = 30cm2

26 tháng 5 2018

Kẻ BK ^CD tại K Þ AB = HK

S A B C D = ( 2 H K ) + 2 K C ) . A H 2 = H C . A H = 96 c m 2

2. Cho hình thang cân ABCD (AB // CD) cóA D = 3. Tính các góc của hình thang cân.3. Cho hình thang cân ABCD (AB // CD) có AH và BK là hai đường cao của hình thang.a) Chứng minh DH = .2CD AB −b) Biết AB = 6 cm, CD = 14 cm, AD = 5 cm, tính DH, AH và diện tích hình thang cânABCD.4. Cho hình thang cân ABCD (AB//CD) có0 A B = = 60, AB = 4,5cm; AD = BC = 2 cm. Tínhđộ dài đáy CD và diện tích hình thang cân ABCD.5. Cho tam giác ABC cân tại A có BD và CE là hai đường trung...
Đọc tiếp

2. Cho hình thang cân ABCD (AB // CD) có
A D = 3
. Tính các góc của hình thang cân.
3. Cho hình thang cân ABCD (AB // CD) có AH và BK là hai đường cao của hình thang.
a) Chứng minh DH = .
2
CD AB −

b) Biết AB = 6 cm, CD = 14 cm, AD = 5 cm, tính DH, AH và diện tích hình thang cân
ABCD.
4. Cho hình thang cân ABCD (AB//CD) có

0 A B = = 60

, AB = 4,5cm; AD = BC = 2 cm. Tính

độ dài đáy CD và diện tích hình thang cân ABCD.
5. Cho tam giác ABC cân tại A có BD và CE là hai đường trung tuyến của tam giác.
Chứng minh BCDE là hình thang cân.
6. Cho tam giác ABC cân tại A có BH và CK là hai đường cao của tam giác. Chứng minh
BCHK là hình thang cân.
7. Cho tam giác ABC cân tại A, có M là trung điểm của BC. Kẻ tií Mx song song với AC cắt AB
tại E và tia My song song với AB cắt AC tại F. Chứng minh:
a) EF là đường trung bình của tam giác ABC;
b) AM là đường trung trực của EF.
8. Cho tam giác ABC, có AM là trung tuyến ứng với BC. Trên cạnh AB lấy điểm D và E sao cho
AD = DE = EB. Đoạn CD cắt AM tại I. Chứng minh:
a) EM song song vói DC;
b) I là trung điểm của AM;

Giúp em với ạ

 

2

Bài 8:

a: Xét ΔDBC có 

E là trung điểm của BD

M là trung điểm của BC

Do đó: EM là đường trung bình của ΔDBC

Suy ra: EM//DC

b: Xét ΔAEM có

D là trung điểm của AE

DI//EM

Do đó: I là trung điểm của AM

Bài 5: 

Xét ΔABC có 

\(\dfrac{AE}{EB}=\dfrac{AD}{DC}\left(=1\right)\)

Do đó: DE//BC

Xét tứ giác BEDC có DE//BC

nên BEDC là hình thang

mà \(\widehat{EBC}=\widehat{DCB}\)

nên BEDC là hình thang cân

5 tháng 1 2020

Tương tự 1B. Tính được số đo của A ^ = 135 0 , B ^ = 90 0 ,    C ^ = 90 0 ,   D ^ = 45 0 , từ đó suy ra ABCD là hình thang vuông ⇒   B C ⊥ D C . Vận dụng nhận xét hình thang ABCH (AB//CH) có hai cạnh bên song song thì hai cạnh đáy bằng nhau, để tính được CH = 3cm, từ đó suy ra DH = 1cm.

Chứng minh được DAHD vuông cân tại H Þ AH = 1cm

Þ diện tích hình thang ABCD là 3,5cm2

AH
Akai Haruma
Giáo viên
7 tháng 9 2021

Lời giải:
Xét tam giác $ADH$ và $BCK$ có:

$\widehat{AHD}=\widehat{BKC}=90^0$

$\widehat{ADH}=\widehat{BCK}$ (do $ABCD$ là htc)

$AD=BC$ (do $ABCD$ là htc)

$\Rightarrow \triangle ADH=\triangle BCK$ (ch-gn)

$\Rightarrow DH=CK$ 

Áp dụng định lý Pitago cho tam giác $ADH$ vuông:

$AH=\sqrt{AD^2-DH^2}=\sqrt{10^2-6^2}=8$ (cm)

Từ tam giác bằng nhau ở trên suy ra $BK=AH=8$ (cm)

AH
Akai Haruma
Giáo viên
7 tháng 9 2021

Hình vẽ:

4 tháng 1 2016

Khó Giau Mat

4 tháng 1 2016

hình tự vẽ bn nhé!

ta có AH vuông góc DC,DC//AB=> AB vuông góc AH

tứ giác ABKH có góc AHK=BKH=AHB=90 độ

=> tứ giác ABKH là hcn

=> AH=BK=6cm

xét tam giác ADH =tam giác BCK (ch-gn)

=> DH=KC

ta có Sbhc=1/2.HC.BK=1/2.10.6=30cm^2

ta lại có HC=HK+KC

=> 10=AB+DH

Sabhd=1/2.(AB+DH).AH=1/2.10.6=30cm^2

Sabcd=Sabhd+Sbhc=30+30=60cm^2

21 tháng 5 2018

SABCD = AH. CD = 6.12 = 72 (cm2)

Đáp án cần chọn là: D