K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
17 tháng 1 2017
Cho hình vuông ABCD, O là giao điểm hai đường chéo AC và BD. Qua O kẻ các đường thẳng lần lượt vuông góc với AB,BC,CD,DA tại E,G,F,H.Chứng minh:
a) Bà điểm E,O,F thẳng hàng và ba điểm G,O,H thẳng hàng
b) Tứ giác EGFH lầ hình vuông
**a) Chứng minh tứ giác AHCG là hình bình hành:** * **Ta có:** AE = CF (gt) và AB = CD (do ABCD là hình bình hành) * **Suy ra:** AB - AE = CD - CF => BE = DF * **Mặt khác:** AG = CH (gt) * Xét hai tam giác ABE và CDF: * AB = CD (ABCD là hình bình hành) * AE = CF (gt) * ∠BAE = ∠DCF (hai góc so le trong, AB // CD) * **Suy ra:** ΔABE = ΔCDF (c.g.c) => BE = DF và ∠ABE = ∠CDF * **Vì:** ABCD là hình bình hành nên AD // BC => ∠DAG = ∠HCB (hai góc so le trong) * Xét hai tam giác ADG và CBH: * AD = BC (ABCD là hình bình hành) * AG = CH (gt) * ∠DAG = ∠HCB (cmt) * **Suy ra:** ΔADG = ΔCBH (c.g.c) => DG = BH và ∠ADG = ∠CBH * **Do đó:** AHCG là hình bình hành vì AH // CG và AH = CG (vì AH = AD - DG = BC - BH = CG) **b) Chứng minh tứ giác EHFG là hình bình hành:** * Từ ΔABE = ΔCDF (chứng minh trên), ta có: BE = DF và ∠ABE = ∠CDF * Từ ΔADG = ΔCBH (chứng minh trên), ta có: DG = BH và ∠ADG = ∠CBH * **Ta có:** EH = AE + AH = CF + CG = FG (vì AE = CF và AH = CG) * **Mặt khác:** EF // HG (vì EF là đường trung bình của tam giác ACD và HG là đường trung bình của tam giác ABC) * **Do đó:** EHFG là hình bình hành vì EH // FG và EH = FG **c) Chứng minh AC, BD, EF, GH đồng quy tại O:** * O là giao điểm của hai đường chéo AC và BD của hình bình hành ABCD. * EF là đường trung bình của tam giác ACD, nên EF đi qua trung điểm của AC, tức là đi qua O. * GH là đường trung bình của tam giác ABC, nên GH đi qua trung điểm của AC, tức là đi qua O. * Vậy AC, BD, EF, GH đồng quy tại O. **Tóm lại:** Chúng ta đã chứng minh được AHCG và EHFG là hình bình hành, và cả bốn đường thẳng AC, BD, EF, GH đều đi qua điểm O. Điều này dựa trên tính chất của hình bình hành, các tam giác bằng nhau và đường trung bình của tam giác.