K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 10 2023

Ta có: 

tam giác AEB = tam giác CFD 

=> \(\widehat{AEB}=\widehat{CFD}=\widehat{EDF}\left(slt\right)\) 

mà 2 goác có vị trí đồng vị

=> EB//DF

Mặt khác: ED//BF

=> EBFD là h.b.h

Ta có: 

Tam giác END= tam giác FMB

=> DN=BM

=> DN+MN=BM+MN=BN

Ta có:

Vì tứ giác ABCD và EBFC đều là h.b.h

=> AC, BD, EF đồng quy tại trung điểm của EF

a: Xét tứ giác AECF có 

AE//CF

AE=CF

Do đó: AECF là hình bình hành

b: Xét ΔAEM có 

E là trung điểm của AB

EN//AM

Do đó; N là trung điểm của BM

=>BN=NM(1)

Xét ΔDNC có 

F là trung điểm của DC

FM//NC

Do đó: M là trung điểm của DN

=>DM=MN(2)

Từ (1) và (2) suy ra DM=MN=NB

c: Xét ΔADM và ΔCBN có

AD=CB

\(\widehat{ADM}=\widehat{CBN}\)

DM=BN

Do đó: ΔADM=ΔCBN

Suy ra: AM=CN

mà EN=AM/2

và MF=CN/2

nên EN=MF

Xét tứ giác MENF có

NE//MF

NE=MF

Do đó: MENF là hình bình hành

10 tháng 10 2021

a: Xét tứ giác AECF có 

AE//CF

AE=CF

Do đó: AECF là hình bình hành

Suy ra: AF//CE

 

a: Xét tứ giác AECF có 

AE//CF

AE=CF

Do đó: AECF là hình bình hành

Suy ra: AF//CE

11 tháng 12 2021

a: Xét tứ giác AECF có 

AE//CF

AE=CF

Do đó: AECF là hình bình hành

Suy ra: AF//CE

4 tháng 9 2023

Bạn tự vẽ hình nha .

7.1 

Ta có : T/g ABCD là hbh

Suy ra : AB = CD 

Mà E là trung điểm của AB ; F là trung điểm của CD.

Suy ra : AE=BE=DF=CF

Xét t/g AECF có : AE = CF ( cmt )

                            AE // CF ( AB //CD )

Suy ra : t/g AECF là hbh. ( đpcm )

7.2 

Từ gt : t/g ABCD là hình bình hành

Suy ra : AC ; BD đồng quy tại trung điểm của AC hoặc trung điểm của BD (1) 

Từ 7.1 : suy ra : AC và EF đồng quy tại trung điểm của mỗi đường (2) 

Từ (1) và (2) : Suy ra : AC;BD;EF đồng quy tại trung điểm của AC; BD hoặc EF.

4 tháng 9 2023

7.1

Vì ABCD là hình bình hành -> AB = CD -> AE = FC

Tứ giác AEFC có AE song song FC, AE = FC 

-> AECF là hình bình hành

7.2

Gọi AC∩BD tại O

Ta có tứ giác ABCD là hình bình hành, hai đường chéo hình bình hành cắt nhau tại trung điểm mỗi đường

⇒O là trung điểm của AC và BD

Mà tứ giác DEBF là hình bình hành nên O là trung điểm của BD thì O cũng là trung điểm của EF

⇒AC;BD;EF cùng đồng quy tại O.

7 tháng 10 2016

a, Ta có: ABCD la hình bình hành

=> AB=CD; AB//CD

Mà E là trung điểm của AB; F là trung điểm của CD.

=>AE= EB= CF= DF (1)

VÌ AB// CD=>EB// DF (2)

Từ(1) và (2) => EBFD là hình bình hành (theo dấu hiệu nhận biết hình bình hành)(đpcm)

b, Xét hbh ABCD ta có:

AC cắt BD tại trung điểm của AC và BD (1)

Xét hình bình hành EBFD có EF cắt BD tại trung điểm của EF và BD (2)

Từ (1) và (2) =>  Ba đường thẳng AC, BD, EF đồng quy

23 tháng 9 2017

cm ơn