Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
ABCD là hình bình hành
=>AD=BC(1)
E là trung điểm của AD
=>\(EA=ED=\dfrac{AD}{2}\left(2\right)\)
F là trung điểm của BC
=>\(FB=FC=\dfrac{BC}{2}\left(3\right)\)
Từ (1),(2),(3) suy ra EA=ED=FB=FC
Bài 2:
a: ABCD là hình bình hành
=>\(\widehat{A}+\widehat{B}=180^0\)
=>\(\widehat{B}=180^0-60^0=120^0\)
ABCD là hình bình hành
=>\(\widehat{A}=\widehat{C};\widehat{B}=\widehat{D}\)
\(\widehat{A}=\widehat{C}\)
mà \(\widehat{A}=60^0\)
nên \(\widehat{C}=60^0\)
\(\widehat{B}=\widehat{D}\)
mà \(\widehat{B}=120^0\)
nên \(\widehat{D}=120^0\)
b: ABCD là hình bình hành
=>\(\widehat{A}=\widehat{C}\)
mà \(\widehat{A}+\widehat{C}=140^0\)
nên \(\widehat{A}=\widehat{C}=\dfrac{140^0}{2}=70^0\)
ABCD là hình bình hành
=>\(\widehat{A}+\widehat{B}=180^0\)
=>\(\widehat{B}=180^0-70^0=110^0\)
ABCD là hình bình hành
=>\(\widehat{B}=\widehat{D}\)
mà \(\widehat{B}=110^0\)
nên \(\widehat{D}=110^0\)
c: ABCD là hình bình hành
=>\(\widehat{B}+\widehat{A}=180^0\)
mà \(\widehat{B}-\widehat{A}=40^0\)
nên \(\widehat{B}=\dfrac{180^0+40^0}{2}=110^0;\widehat{A}=\dfrac{180^0-40^0}{2}=70^0\)
ABCD là hình bình hành
=>\(\widehat{A}=\widehat{C};\widehat{B}=\widehat{D}\)
=>\(\widehat{C}=70^0;\widehat{D}=110^0\)
b: Xét tứ giác AECF có
AE//CF
AE=CF
Do đó: AECF là hình bình hành
Suy ra: FA//CE
a Xét tứ giác DEBF có
BE//DF
BE=FD
Do đó; DEBF là hình bình hành
=>DB cắt EF tại trung điểm của mỗi đường(1)
b: Vì ABCD là hình bình hành
nên AC cắt BD tại trung điểm của mõi đường(2)
Từ (1), (2) suy ra AC,BD,EF đồng quy
=>E,O,F thẳng hàng
a: Xét ΔDAE và ΔBCF có
DA=BC
\(\widehat{DAE}=\widehat{BCF}\)
AE=CF
Do đó: ΔDAE=ΔBCF
=>DE=BF
Xét ΔBAE và ΔDCF có
BA=DC
\(\widehat{BAE}=\widehat{DCF}\)
AE=CF
Do đó; ΔBAE=ΔDCF
=>BE=DF
Xét tứ giác BEDF có
BE=DF
BF=DE
Do đó: BEDF là hình bình hành
Xét ΔNAE và ΔMCF có
NA=MC
\(\widehat{NAE}=\widehat{MCF}\)
AE=CF
Do đó; ΔNAE=ΔMCF
=>EN=FM
b: BEDF là hình bình hành
=>BF//DE
=>BM//DN
Xét tứ giác BMDN có
BM//DN
BN//DM
Do đó: BMDN là hình bình hành
a: Xét tứ giác DEBF có
BE//DF
BE=DF
Do đó: DEBF là hình bình hành
b: Vì DEBFlà hình bình hành
nên DB cắt EF tại trung điểm của mỗi đường(1)
Vì ABCD là hình bình hành
nên AC cắt BD tại trung điểm của mỗi đường(2)
Từ (1), (2) suy ra E,O,F thẳng hàng
c: Để DEBF là hình thoi thì DE=BE=AB/2
Xét ΔDAB có
DE là trung tuyến
DE=AB/2
Do đo:ΔDAB vuông tại D
=>DA vuông góc với DB
Xét tứ giác BEDF có
BE//DF
BE=DF
Do đó: BEDF là hình bình hành
Suy ra: BF=DE
Bài 3:
a: Ta có: AD+DB=AB
AE+EC=AC
mà DB=EC và AB=AC
nên AD=AE
Xét ΔABC có \(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)
nên DE//BC
Xét tứ giác BDEC có DE//BC
nên BDEC là hình thang
Hình thang BDEC có \(\widehat{DBC}=\widehat{ECB}\)
nên BDEC là hình thang cân
b: Để BD=DE=EC thì BD=DE và DE=EC
BD=DE thì ΔDBE cân tại D
=>\(\widehat{DBE}=\widehat{DEB}\)
mà \(\widehat{DEB}=\widehat{EBC}\)(hai góc so le trong, DE//BC)
nên \(\widehat{DBE}=\widehat{EBC}\)
=>\(\widehat{ABE}=\widehat{EBC}\)
=>BE là phân giác của góc ABC
=>E là chân đường phân giác kẻ từ B xuống AC
Xét ΔEDC có ED=EC
nên ΔEDC cân tại E
=>\(\widehat{EDC}=\widehat{ECD}\)
mà \(\widehat{EDC}=\widehat{DCB}\)(hai góc so le trong, DE//BC)
nên \(\widehat{ECD}=\widehat{DCB}\)
=>\(\widehat{ACD}=\widehat{BCD}\)
=>CD là phân giác của góc ACB
=>D là chân đường phân giác từ C kẻ xuống AB
Bài 2:
a: Ta có: ABCD là hình bình hành
=>AB//CD và AB=CD(1)
Ta có: M là trung điểm của AB
=>\(AM=MB=\dfrac{AB}{2}\left(2\right)\)
Ta có: N là trung điểm của CD
=>\(NC=ND=\dfrac{CD}{2}\left(3\right)\)
Từ (1),(2),(3) suy ra AM=MB=NC=ND
Xét tứ giác AMCN có
AM//CN
AM=CN
Do đó: AMCN là hình bình hành
b: Ta có AMCN là hình bình hành
=>AN//CM
Xét ΔDFC có
N là trung điểm của DC
NE//FC
Do đó: E là trung điểm của DF
=>DE=EF(4)
Xét ΔABE có
M là trung điểm của BA
MF//AE
Do đó: F là trung điểm của BE
=>BF=FE(5)
Từ (4) và (5) suy ra BF=FE=ED
a) Ta thấy : BAD = BCD = 120°( tính chất)
Mà AB//CD ( ABCD là hình bình hành)
=> ABC + BCD = 180°
=> ABC = ADC = 60°