Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D F K H E
a,\(\Delta AHB\&\Delta AEC\)có: \(\widehat{A}chung,\widehat{AEC}=\widehat{AHB}=90^o\)
\(\Rightarrow\Delta AHB\infty\Delta AEC\left(g.g\right)\Rightarrow\frac{AH}{AE}=\frac{AB}{AC}\Rightarrow AB.AE=AH.AC\)
b,\(\Delta AKD\&\DeltaÀFC\)CÓ: \(\widehat{A}chung,\widehat{AFC}=\widehat{AKD}=90^o\)
\(\Rightarrow\Delta AKD\infty\DeltaÀFC\left(g.g\right)\Rightarrow\frac{AK}{AF}=\frac{AD}{AC}\Rightarrow AD.AF=AK.AC\)
c, Vì ABCD là hbh => AB=DC
--------------------- => AB//CD => GÓC BAC=ACD (SO LE TRONG)
Xét tam giác ABH và tam giác CDK có:
Tam giác ABH vuông tại H
----------- CDK ------------- K
cạnh huyền AB=CD
góc nhọn BAC=ACD
=> tam giác ABH = tam giác CDK
=> AH=KC
ta có: AC = AH + HC
Mà: AH=KC
=> AC = AH+HK+AH
=> AC = AH + AK
Ta có: AB.AE+AD.AF = AH.AC+AK.AC = AC.(AH+AK) = AC.AC = AC2
a: Xét ΔAEC vuông tại E và ΔAHB vuông tại H có
góc EAC chung
=>ΔAEC đồng dạng với ΔAHB
=>AE/AH=AC/AB
=>AE*AB=AC*AH
b: Xét ΔCBH vuông tại H và ΔACF vuông tại F có
góc BCH=góc CAF
=>ΔCBH đồng dạng với ΔACF
a. hai tg ABG và tg ACE vuông tại G và E có góc GAB chung nên đồng dạng(gg)
b. Vì tg AEC và ABG đồng dạng --> AB/AC = AG/AE -> AB.AE = AC.AG(1)
Vì hai tg vuông AFC và CGB có góc CAF = góc BCG (slt) --> tg AFC và tg CGB đồng dạng --> AF/CG = AC/BC --> AF.BC = AC.CG thay BC = AD --> AF.AD = AC.CG (2).
Cộng (1) và (2) vế theo vế --> AB.AE + AD.AF = AC.AG + AC.CG = AC(AG+GC) = AC.AC = AC^2
Vậy AB.AE + AD.AF = AC^2.
a b c d o e f h k
gọi o là giao của 2 đường chéo ac và bd
xét hbh abcd có 2 đường cháo ac và bd mà 2 đường chéo này lại giao nha ở o (cmt)
=> o là trung điểm của ac ; o là trung điểm của bd
xét tam giác vuông aoe và tâm giác vuông bfc
có góc aoe = góc foc (đối đỉnh )
ao=oc( o là ủng điểm của oc chứng minh rên)
-> tam giác vông aoe = tam giác vuông bfc( trường hợp cạnh huyền goác nhọn )
=> ae=cf (t/c....)
có ae=cf( cùng vuông góc với bd)
=> aecf là hình bình hành ( định nghĩa 3 : 1 cặp cạnh đối song song và = nhau)
b) tự vẽ hình nối thêm cho chính xác nhé
có abcd là hình bình hành (gt)
mà ac và bd giao tại o
-=> o là tủng điểm của ac (t/c...)
có ab//cd=> ak //hc
có ae//fc( vì aecf là hbh chứng minh câu a)=> ah // ck mà ak //ch
=> akch là hbh ( định nghĩa 1: các cặp cạnh đối song song )
có akch là hbh (cmt) có ac và hk là 2 đường chéo
o là trung điểm của ac (cmt)
=> o là tủng điểm của hk => hk đi qua o mà ac và bd cũng đi qua o (câu a)
=> hk ,ac và bd cùng đi qua o
=> hk ,bd và ac đồng quy tại o ,
ko hiểu hoặc mk sai chỗ nào ib hộ mk nhé
b: Xét ΔAHB vuông tại H và ΔACE vuông tại E có
góc A chung
=>ΔABH đồng dạng với ΔACE
Xét ΔBHC vuông tại H và ΔCFA vuông tại F có
góc BCA=góc CAF
=>ΔBHC đồng dạng với ΔCFA
c: AB/AC=AH/AE
=>AB*AE=AH*AC
BC/AC=CH/AF=BH/CF
=>DA/AC=CH*AF
=>AC*CH=AD*AF
=>AC^2=AB*AE+AD*AF
Câu hỏi của Nguyễn Đình Kim Thanh - Toán lớp 8 - Học toán với OnlineMath
Em xem link bài nhé!
hình như đề sai bạn ạ trong HBH thì các cặp cạnh đói bằng nhau mà sao AC>BD được thế nên mình tạm bỏ qua AC>BD nhé :)))