K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔEBF và ΔGDH có

EB=GD

góc B=góc D

BF=DH

=>ΔEBF=ΔGDH

=>EF=gh

Xét ΔEAH và ΔGCF có

EA=GC

góc A=góc C

AH=CF

=>ΔEAH=ΔGCF

=>EH=GF

mà EF=GH

nên EHGF là hình bình hành

b: Xét tứ giác AECG có

AE//CG

AE=CG

=>AECG là hbh

=>AC cắt EG tại trung điểm của mỗi đường(1)

EFGH là hbh

=>EG cắt FH tại trung điểm của mỗi đường(2)

ABCD là hbh

=>AC cắt BD tại trung điểm của mỗi đường(3)

Từ (1), (2), (3) suy ra AC,BD,EG,FH đồng quy

8 tháng 10 2016

a) Ta có: AE = CG (giả thiết) mà AB = CD (cạnh đối của hình bình hành ABCD), suy ra BE = DG.
△BEF và △DGH có:
           BE = DG (chứng minh trên)
           B^=D^  (hai góc đối của hình bình hành ABCD)
do đó: △BEF = △DGH (c.g.c), suy ra EF = GH.
Chứng minh tương tự, ta có: EH = FG.
Tứ giác EFGH có các cạnh đối bằng nhau nên là hình bình hành.
b) Tứ giác ABCD là hình bình hành ...

8 tháng 10 2016

Cho hình bình hành ABCD tên các cạnh AB, BC, CD, DA lấy tương ứng các điểm E, F, G, H sao cho AE = CG; BF = DH. CMR:

a, EFGH là hình bình hành

b, Các đường thẳng AC; BD; EG; HF cắt nhau tại 1 điểm

a) Ta có: AE = CG (giả thiết) mà AB = CD (cạnh đối của hình bình hành ABCD), suy ra BE = DG.
△BEF và △DGH có:
           BE = DG (chứng minh trên)
           B^=D^  (hai góc đối của hình bình hành ABCD)
do đó: △BEF = △DGH (c.g.c), suy ra EF = GH.
Chứng minh tương tự, ta có: EH = FG.
Tứ giác EFGH có các cạnh đối bằng nhau nên là hình bình hành.
b) Tứ giác ABCD là hình bình hành ...

đúng không

8 tháng 10 2016

a) Ta có: AE = CG (giả thiết) mà AB = CD (cạnh đối của hình bình hành ABCD), suy ra BE = DG.
△BEF và △DGH có:
           BE = DG (chứng minh trên)
           B^=D^  (hai góc đối của hình bình hành ABCD)
do đó: △BEF = △DGH (c.g.c), suy ra EF = GH.
Chứng minh tương tự, ta có: EH = FG.
Tứ giác EFGH có các cạnh đối bằng nhau nên là hình bình hành.
b) Tứ giác ABCD là hình bình hành ...

8 tháng 10 2016

cho hình bình hành ABCD.Gọi E,F,G,H lần lượt thuộc cạnh AB,CD,EG,HF sao cho BE=DG,BF=DH.Chứng minh

a)EFGH là hình bình hành 

 b)các đường thẳng AC,DB,EG,HF đồng quy

a) Ta có: AE = CG (giả thiết) mà AB = CD (cạnh đối của hình bình hành ABCD), suy ra BE = DG.
△BEF và △DGH có:
           BE = DG (chứng minh trên)
           B^=D^  (hai góc đối của hình bình hành ABCD)
do đó: △BEF = △DGH (c.g.c), suy ra EF = GH.
Chứng minh tương tự, ta có: EH = FG.
Tứ giác EFGH có các cạnh đối bằng nhau nên là hình bình hành.
b) Tứ giác ABCD là hình bình hành ...

đúng không ?

Xét tứ giác AECF có

AE//CF

AE=CF

=>AECF là hình bình hành

=>AC cắt EF tại trung điểm của mỗi đườg(1)

Xét tứ giác BGDH có

BG//DH

BG=DH

=>BGDH là hình bình hành

=>BD cắt GH tại trung điểm của mỗi đường(2)

ABCD là hìnhbình hành

nên AC cắt BD tại trung điểm của mỗi đường(3)

Từ (1), (2) , (3) suy ra AC,BD,GH,EF đồng quy tại trung điểm của mỗi đường

=>GH cắt EF tại trung điểm của mỗi đường

Xét tứ giác EHFG có

GH cắt EF tại trung điểm của mỗi đường

=>EHFG là hình bình hành

4 tháng 8 2023

Mình cảm ơn ạ

6 tháng 9 2018

AE//CG, AE = CG nên AECG là hình bình hành ⇒ O là trung điểm của EG. Tương tự O là trung điểm của HF.