Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔEBF và ΔGDH có
EB=GD
góc B=góc D
BF=DH
=>ΔEBF=ΔGDH
=>EF=gh
Xét ΔEAH và ΔGCF có
EA=GC
góc A=góc C
AH=CF
=>ΔEAH=ΔGCF
=>EH=GF
mà EF=GH
nên EHGF là hình bình hành
b: Xét tứ giác AECG có
AE//CG
AE=CG
=>AECG là hbh
=>AC cắt EG tại trung điểm của mỗi đường(1)
EFGH là hbh
=>EG cắt FH tại trung điểm của mỗi đường(2)
ABCD là hbh
=>AC cắt BD tại trung điểm của mỗi đường(3)
Từ (1), (2), (3) suy ra AC,BD,EG,FH đồng quy
a) Ta có: AE = CG (giả thiết) mà AB = CD (cạnh đối của hình bình hành ABCD), suy ra BE = DG.
△BEF và △DGH có:
BE = DG (chứng minh trên)
B^=D^ (hai góc đối của hình bình hành ABCD)
do đó: △BEF = △DGH (c.g.c), suy ra EF = GH.
Chứng minh tương tự, ta có: EH = FG.
Tứ giác EFGH có các cạnh đối bằng nhau nên là hình bình hành.
b) Tứ giác ABCD là hình bình hành ...
Cho hình bình hành ABCD tên các cạnh AB, BC, CD, DA lấy tương ứng các điểm E, F, G, H sao cho AE = CG; BF = DH. CMR:
a, EFGH là hình bình hành
b, Các đường thẳng AC; BD; EG; HF cắt nhau tại 1 điểm
a) Ta có: AE = CG (giả thiết) mà AB = CD (cạnh đối của hình bình hành ABCD), suy ra BE = DG.
△BEF và △DGH có:
BE = DG (chứng minh trên)
B^=D^ (hai góc đối của hình bình hành ABCD)
do đó: △BEF = △DGH (c.g.c), suy ra EF = GH.
Chứng minh tương tự, ta có: EH = FG.
Tứ giác EFGH có các cạnh đối bằng nhau nên là hình bình hành.
b) Tứ giác ABCD là hình bình hành ...
đúng không
a) Ta có: AE = CG (giả thiết) mà AB = CD (cạnh đối của hình bình hành ABCD), suy ra BE = DG.
△BEF và △DGH có:
BE = DG (chứng minh trên)
B^=D^ (hai góc đối của hình bình hành ABCD)
do đó: △BEF = △DGH (c.g.c), suy ra EF = GH.
Chứng minh tương tự, ta có: EH = FG.
Tứ giác EFGH có các cạnh đối bằng nhau nên là hình bình hành.
b) Tứ giác ABCD là hình bình hành ...
cho hình bình hành ABCD.Gọi E,F,G,H lần lượt thuộc cạnh AB,CD,EG,HF sao cho BE=DG,BF=DH.Chứng minh
a)EFGH là hình bình hành
b)các đường thẳng AC,DB,EG,HF đồng quy
a) Ta có: AE = CG (giả thiết) mà AB = CD (cạnh đối của hình bình hành ABCD), suy ra BE = DG.
△BEF và △DGH có:
BE = DG (chứng minh trên)
B^=D^ (hai góc đối của hình bình hành ABCD)
do đó: △BEF = △DGH (c.g.c), suy ra EF = GH.
Chứng minh tương tự, ta có: EH = FG.
Tứ giác EFGH có các cạnh đối bằng nhau nên là hình bình hành.
b) Tứ giác ABCD là hình bình hành ...
đúng không ?
Xét tứ giác AECF có
AE//CF
AE=CF
=>AECF là hình bình hành
=>AC cắt EF tại trung điểm của mỗi đườg(1)
Xét tứ giác BGDH có
BG//DH
BG=DH
=>BGDH là hình bình hành
=>BD cắt GH tại trung điểm của mỗi đường(2)
ABCD là hìnhbình hành
nên AC cắt BD tại trung điểm của mỗi đường(3)
Từ (1), (2) , (3) suy ra AC,BD,GH,EF đồng quy tại trung điểm của mỗi đường
=>GH cắt EF tại trung điểm của mỗi đường
Xét tứ giác EHFG có
GH cắt EF tại trung điểm của mỗi đường
=>EHFG là hình bình hành
AE//CG, AE = CG nên AECG là hình bình hành ⇒ O là trung điểm của EG. Tương tự O là trung điểm của HF.