Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔADNΔADN và ΔMBAΔMBA có:
ˆDAN=ˆBMADAN^=BMA^ (AB//DC nên hai góc ở vị trí so le trong bằng nhau)
ˆAND=ˆMABAND^=MAB^ (hai góc ở vị trí so le trong)
⇒ΔADN∼ΔMBA⇒ΔADN∼ΔMBA (g.g)
⇒DNBA=DABM⇒DNBA=DABM (hai cạnh tương ứng)
⇒BM.DN=BA.DA⇒BM.DN=BA.DA mà BA,DABA,DA là hai cạnh của hình bình hành, hình bình hành cố định nên BM.DNBM.DN cố định (đpcm)
mình nghĩ dc câu a thôi
1) Làm được câu a chưa
a) Xét tam giác HPB và KPC có:
\(\widehat{ABP}=\widehat{ACP}\)
\(\widehat{H}=\widehat{K}=90^o\)
\(\Rightarrow\) Tam giác HPB đồng dạng với tam giác KCP
\(\Rightarrow BP.KP=CP.HP\)
b) Tam giác HBC vuông có D là trung điểm cạnh huyền BC
\(\Rightarrow HD=\frac{BC}{2}\)
Tương tự ta cũng có \(KD=\frac{BC}{2}\)
\(\Rightarrow DK=DH\left(đpcm\right)\)
2) Gọi O là tâm hình bình hành. Qua M kẻ đường thẳng song song BD cắt AC; AD theo thứ tự tại N; P => N là trung điểm MP. Qua K kẻ đường thẳng song song BD cắt AB tại Q. Không mất tính tổng quát giả thiết Q nằm giữa A và G, G nằm giữa Q và N .Ta có:
GQ/GN = KQ/MN
<=> GQ/GN = KQ/NP ( vì MN = NP)
<=> GQ/GN = AQ/AN ( vì KQ/NP = GN/AN)
<=> GQ/AQ = GN/AN
<=> (AG - AQ)/AQ = (AN - AG)/AN ( vì GQ = AG - AQ; GN = AN - AG)
<=> 1/AN + 1/AQ = 2/AG
<=> OA/AN + OA/AQ = 2.OA/AG
<=> AB/AM + AD/AK = AC/AG (đpcm) ( vì OA/AN = AB/AM; OA/AQ = AD/AK; AC = 2OA)
câu 1b bạn làm sai r, H,P,C có thẳng hàng đâu
còn câu 2 dòng thứ 6 sao ra dòng thứ 7 vậy bạn, AQ=GN hé.sao ra???
Bài 1:
a: Xét tứ giác AECF có
O là trung điểm của AC
O là trung điểm của FE
Do đó: AECF là hình bình hành
Suy ra: AE//CF
b: Gọi H là trung điểm của KC
Xét ΔAKC cso
O là trung điểm của AC
H là trung điểm của KC
Do đó: OH là đường trung bình
=>OH//AK
hay OH//KE
Xét ΔDOH có
E là trung điểm của DO
EK//OH
Do đó: K là trung điểm của DH
=>DK=KH=HC
hay DK=KC/2
a) Ta có : AD // CK => \(\frac{MK}{MD}=\frac{CM}{AM}\left(1\right)\)
CD // AN => \(\frac{MD}{MN}=\frac{CM}{AM}\left(2\right)\)
Từ (1) và (2) suy ra \(\frac{MK}{MD}=\frac{MD}{MN}\Rightarrow MD^2=MK.MN\)
b) Sai đề
lưu ý : do DM/DN + DM/DK =1 nên DM<DN , DM <DK
b) theo câu a to có: DM^2 =MN.MK=>DM/MN=MK/DM => DM/(DM+MN) =MK/(MK+DM) => DM/DN =MK/DK =>DM/DN + DM/DK =MK/DK + DM/DK =>DM/DN + DM/Dk =(MK+DM)/DK=DK/DK = 1 (đpcm) A B C D M N K a) do AB//CD (tgABCD là hbh)nên tg AMN đ.dạng vs tgCMD =>MN/DM =AM/CM (1) mặt khác: AD//BC( tgABCD là hbh)=>tg AMD đ.dạng vs tgCMK (T.Lét) (T.Lét) =>DM/MK =AM/CM (2) từ (1) và (2) =>MN/DM=DM/MK=>DM^2 =MN.MK
a) Ta có AB // CD (ABCD hbh) -> AMN đồng dạng CMD (talet)
-> \(\frac{MN}{DM}=\frac{AM}{CM}\)(1)
Lại có AD // BC (ABCD hbh) -> AMD đồng dạng CKM (talet)
-> \(\frac{DM}{MK}=\frac{AM}{CM}\)(2)
(1) (2) -> \(\frac{MN}{DM}=\frac{DM}{MK}=DM^2=MK.MN\)
b) Ta có \(\frac{DM}{MK}=\frac{MK}{DM}\left(cma\right)\)
\(\Rightarrow\frac{DM}{DM+MN}=\frac{MK}{MK+DM}\)
\(\Rightarrow\frac{DM}{DN}=\frac{MK}{DK}\)
\(\Rightarrow\frac{DM}{DN}+\frac{DM}{DK}=\frac{MK}{DK}+\frac{DM}{DK}\)
\(\frac{DM}{DN}+\frac{DM}{DK}=\frac{MK+DM}{DK}=\frac{DK}{DK}=1\left(đpcm\right)\)