Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Một đội xe tải trong 3 ngày phải chuyển hết một số hàng hóa 2 ngày đầu độc chất thải đã chuyển được 13,14 số hàng hóa biết rằng ngày thứ hai đội chuyển được 3/7 số hàng hóa vận chuyển ít hơn ngày thứ nhất 30 tấn hỏi ngày thứ ba đôi chân bao nhiêu hàng hóa
Gọi E, D lần lượt là trung điểm AB, AC, ta có I, E, D thẳng hàng
MN cắt BD tại J, hạ CH vuông góc ED tại H
Có DH=DC2=ED2DH=DC2=ED2
=>EDEH=23EDEH=23
Có BGBD=BGBJ.BJBDBGBD=BGBJ.BJBD
=23.BNBC=EDEH.EIED=23.BNBC=EDEH.EIED
=>BGBD=EIEHBGBD=EIEH
<=>BGEI=BDEHBGEI=BDEH (1)
Ta có △CBD∼△CEH△CBD∼△CEH (g, g)
=>CBCE=BDEH=BGEICBCE=BDEH=BGEI
=>△CBG∼△CEI△CBG∼△CEI (c, g, c) (2)
(2) =>ˆBCG=ˆECIBCG^=ECI^
<=>ˆBCG+ˆGCE=ˆGCE+ˆECIBCG^+GCE^=GCE^+ECI^
<=>ˆBCE=ˆGCIBCE^=GCI^ (3)
(2) =>BCEC=GCICBCEC=GCIC (4)
từ (3, 4) =>△BEC∼△GIC△BEC∼△GIC (c, g, c)
=>ˆI=90∘I^=90∘, ˆG=60∘G^=60∘ (đpcm)
Hình gửi kèm
Bài 2 : a) Ta có : OM // AB => \(\frac{OM}{AB}=\frac{OD}{DB}\)( Hq talet) (1)
ON // AB => \(\frac{ON}{AB}=\frac{OC}{AC}\)(2)
AB // CD => \(\frac{OD}{OB}=\frac{OC}{OA}\Rightarrow\frac{OD}{OB+OD}=\frac{OC}{OA+OC}\Rightarrow\frac{OD}{DB}=\frac{OC}{AC}\)(3)
Từ (1), (2), (3) => OM/AB = ON/AB => OM = ON
b) Ta có : ON // CD => \(\frac{ON}{CD}=\frac{OB}{DB}\)(4)
Cộng từng vế (1) và (4) ta đc : \(\frac{OM}{AB}+\frac{ON}{CD}=\frac{OD}{DB}+\frac{OB}{DB}=\frac{OD+OB}{DB}=1\)
Suy ra : \(\frac{2OM}{AB}+\frac{2ON}{CD}=2\Rightarrow\frac{MN}{AB}+\frac{MN}{CD}=2\Rightarrow\frac{1}{AB}+\frac{1}{CD}=\frac{2}{MN}\)
c) Để mình tính đã nha
Câu 3:
Xét ΔMDC có AB//CD
nên MA/MD=MB/MC(1)
Xét ΔMDK có AI//DK
nên AI/DK=MA/MD(2)
Xét ΔMKC có IB//KC
nên IB/KC=MB/MC(3)
Từ (1), (2) và (3) suy ra AI/DK=IB/KC=MI/MK
Vì AI//KC nên AI/KC=NI/NK=NA/NC
Vì IB//DK nên IB/DK=NI/NK
=>AI/KC=IB/DK
mà AI/DK=IB/KC
nên \(\dfrac{AI}{KC}\cdot\dfrac{AI}{DK}=\dfrac{IB}{DK}\cdot\dfrac{IB}{DC}\)
=>AI=IB
=>I là trung điểm của AB
AI/DK=BI/KC
mà AI=BI
nên DK=KC
hay K là trung điểm của CD
Gọi E là trung điểm của MB, P là giao điểm của AI với CD. Đặt AB = a
Theo định lý Ta-lét. Ta có: \(\frac{1}{2}=\frac{GE}{GN}=\frac{AE}{NP}\)
\(=\frac{\frac{2}{3}AB}{\frac{1}{2}CD+CP}=\frac{4a}{3a+6CP}\Rightarrow CP=\frac{5a}{6}\)
Suy ra \(\frac{IB}{IC}=\frac{AB}{CP}=\frac{6}{5}\)
Vì \(\frac{GA}{GP}=\frac{GE}{GM}=\frac{1}{2}\)nên \(\frac{GA}{AP}=\frac{1}{3}\) (1)
Mà \(\frac{IA}{IP}=\frac{IB}{IC}=\frac{6}{5}\)nên kết hợp với (1) ta được: \(\frac{GI}{AP}=\frac{AI}{AP}-\frac{AG}{AP}=\frac{6}{11}-\frac{1}{3}=\frac{7}{33}\) (2)
Chia theo vế của (1) cho (2) ta được:
\(\frac{GA}{GI}=\frac{11}{7}\)
Tóm lại \(\frac{GA}{GI}=\frac{11}{7};\frac{IB}{IC}=\frac{6}{5}\)
Èo, lúc trước làm, giờ đọc lại chả hiểu gì:( mà lúc đó mới lớp 7 ko hiểu sao mình lại làm được ta:)) giờ làm ko đc:(