K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
13 tháng 1

a) Vì ABCD là hình bình hành nên AB // CD.

Tứ giác AMCN có AM // CN (vì AB // CD); AM = CN (giả thiết).

Suy ra, tứ giác AMCN là hình bình hành.

Do đó AN = CM (đpcm).

b) Vì tứ giác AMCN là hình bình hành suy ra \(\widehat {AMC} = \widehat {ANC}\) (đpcm).

24 tháng 11 2023

a: Xét tứ giác AMCN có

AM//CN

AM=CN

Do đó: AMCN là hình bình hành

b:ABCD là hình bình hành

=>AC cắt BD tại trung điểm của mỗi đường

=>O là trung điểm chung của AC và BD

AMCN là hình bình hành

=>AC cắt MN  tại trung điểm của mỗi đường

mà O là trung điểm của AC

nên O là trung điểm của MN

11 tháng 10 2023

loading... a) Do ABCD là hình bình hành

AB // CD

⇒ AM // CN

Tứ giác AMCN có:

AM // CN (cmt)

AM = CN (gt)

⇒ AMCN là hình bình hành

⇒ AN // CM

b) Do ABCD là hình bình hành

O là giao điểm của AC và BD

⇒ O là trung điểm của AC

Lại có AMCN là hình bình hành

O là trung điểm của AC (cmt)

⇒ O là trung điểm của MN

a: Xét tứ giác BMDN có

BM//DN

BM=DN

Do đó: BMDN là hình bình hành

b: AM+MB=AB

CN+ND=CD

mà MB=ND và AB=CD

nên AM=CN

Xét tứ giác AMCN có

AM//CN

AM=CN

Do đó: AMCN là hình bình hành

c: AMCN là hình bình hành

=>AN//CM

=>NK//MH

BMDN là hình bình hành

=>BN//DM

=>NH//KM

Xét tứ giác MKNH có

MK//NH

MH//NK

Do đó: MKNH là hình bình hành

16 tháng 10 2023

ngu 

 

a: Sửa đề; AMCN

Xét tứ giác AMCN có

AM//CN

AM=CN

=>AMCN là hình bình hành

b:

Sửa đề: O là trung điểm của AC

AMCN là hình bình hành

=>AC cắt MN tại trung điểm của mỗi đường

mà O là trung điểm của AC

nên O là trung điểm của MN

c: Xét ΔOAI và ΔOCK có

góc OAI=góc OCK

OA=OC

góc AOI=góc COK

=>ΔOAI=ΔOCK

=>OI=OK

Xét tứ giác IMKN có

O là trung điểm chung của IK và MN

=>IMKN là hình bình hành

=>IM//NK

24 tháng 2 2020

( bạn tự vẽ hình nha )
a, Vì M nằm tren cạnh AB, N nằm trêm cạnh CD => AM \(//\) CN
Mà AM=CN ( Theo gt) . Do đó tứ giác AMCN là hình bình hành ( Theo đk 3)
b, Vì ABCD là hình bình hành => Góc A= Góc C
Xét 2 tam giác AMP và tam giác CNQ bằng nhau theo TH c-g-c ( Tự CM )
=> MP=NC( 2 cạnh tương ứng )(1)
CMTT 2 tam giác MBQ và NDP ta được MQ=PN (2)
Từ (1) và (2) ta có MPNQ là hình bình hành (đpcm)