Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔGAB có CK//AB
nên \(\dfrac{GC}{GB}=\dfrac{GK}{GA}\)
b: Xét ΔKAD và ΔKGC có
\(\widehat{KAD}=\widehat{KGC}\)(hai góc so le trong, AD//GC)
\(\widehat{AKD}=\widehat{GKC}\)(hai góc đối đỉnh)
Do đó: ΔKAD đồng dạng với ΔKGC
=>\(\dfrac{KA}{KG}=\dfrac{AD}{GC}\)
=>\(\dfrac{KA}{AD}=\dfrac{KG}{GC}\)
=>\(\dfrac{AD}{AK}=\dfrac{GC}{GK}\)
mà \(\dfrac{GC}{GK}=\dfrac{GB}{GA}\)(GC/GB=GK/GA)
nên \(\dfrac{AD}{AK}=\dfrac{BG}{GA}\)
a:
ta có: ABCD là hình bình hành
=>AB//CD
Ta có: AB//CD
K\(\in\)CD
Do đó: CK//AB
Xét ΔGAB có CK//AB
nên \(\dfrac{GC}{GB}=\dfrac{GK}{GA}\)
b:
ta có: ABCD là hình bình hành
=>BC//AD
Ta có: BC//AD
C\(\in\)BG
Do đó: BG//AD
=>\(\widehat{BGA}=\widehat{DAG}\)(hai góc so le trong)
Xét ΔBGA và ΔDAK có
\(\widehat{BGA}=\widehat{DAK}\)
\(\widehat{GBA}=\widehat{ADK}\)(ABCD là hình bình hành)
Do đó: ΔBGA đồng dạng với ΔDAK
=>\(\dfrac{BG}{DA}=\dfrac{GA}{AK}\)
=>\(\dfrac{AD}{AK}=\dfrac{BG}{GA}\)
a) BD, CE là các đường trung tuyến của \(\Delta ABC\)
\(\Rightarrow\)DA = DC; EA =EB
\(\Rightarrow\)ED là đường trung bình của \(\Delta ABC\)
\(\Rightarrow\)ED // BC; ED = 1/2 BC
\(\Delta GBC\)có MG = MB; NG = NC
\(\Rightarrow\)MN là đường trung bình của \(\Delta GBC\)
\(\Rightarrow\)MN // BC; MN = 1/2 BC
suy ra: MN // ED; MN = ED
\(\Rightarrow\)tứ giác MNDE là hình bình hành
c) MN = ED = 1/2 BC
\(\Rightarrow\)MN + ED = \(\frac{BC}{2}\)+ \(\frac{BC}{2}\)= BC
a. Xét tam giác HCD cóHN=DN;HM=CM
=> MN là đường trung bình của tam giác HCD => MN//DC
=> DNMC là hình thang
b. Ta có MN là đường trung bình của tam giác HCD => MN=1/2CD
Mà AB=1/2CD => AB =MN
Do MN//CD và AB//CD => AB//MN
Xét tứ giác ABMN có AB//MN; AB=MN
=> ABMN là hình bình hành
c.Ta có MN//CD mà CD vg AD
=> MN vg AD
Xét tam giác ADM có DH và MN là 2 đường cao của tam giác
Mà chúng cắt nhau tại N nên N là trực tâm của tam giác ADM
=> AN là đường cao của tam giác ADM
=> AN vg DM
Do ABMN là hình bình hành nên AN//BM
=> BM vg DM => BMD =90*
a: Xét ΔGAB có KC//AB
nên \(\dfrac{GC}{GB}=\dfrac{GK}{GA}\)
b: Xét ΔKAD và ΔAGB có
\(\widehat{KAD}=\widehat{AGB}\)(hai góc so le trong, DA//BC)
\(\widehat{AKD}=\widehat{GAB}\)(hai góc so le trong, DK//AB)
Do đó: ΔKAD đồng dạng với ΔAGB
=>\(\dfrac{AK}{AG}=\dfrac{AD}{GB}\)
=>\(\dfrac{AK}{AD}=\dfrac{AG}{GB}\)
=>\(\dfrac{AD}{AK}=\dfrac{BG}{GA}\)