K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 11 2017

a) Ta có OM=1/2OD

ON=1/2OB

Mà OD=OB

=>OM=ON

Xét tứ giác AMCN có OA=OC(gt),OM=ON(cmt)

=>AMCN là hình bình hành

b)Ta có AB//DC(gt) hay AF//CE(1)

AM//CN(AMCN là hình bình hành) hay AE//CF(2)

Từ (1) và (2)=>AECF là hình bình hành.

c)Ta có AECF là hình bình hành

Mà OA=OC(gt)

=>O là giao điểm hai đường chéo

=>O là trung điểm của EF

=>OE=OF

=>E và F đối xứng với nhau qua O

21 tháng 11 2018

O là giao điểm của hai đường chéo AC,BD(gt)
=> AO=OC, OD=OB (vì ABCD là hình bình hành)
Lại có;
E là trung điểm của OD(gt)
=> OE=1/2.OD
F là trung điểm của OB(gt)
=> OF=1/2.OB
Mà OD=OB (cmt)
=> OE=OF
Tứ giác AFCE có: OA=OC(cmt) và OE=OF(cmt)
=> O là giao điểm của hai đường chéo AC,EF cắt nhau tại trung điểm mỗi đoạn
=> AFCE là hình bình hành
=> AE//CF (vì AE, CF là hai cạnh đối nhau)
Có AE//CF (cmt) => EK// CF (vì K thuộc AE)
Từ O vẽ đường thẳng cắt CD tại H sao cho OH//EK//CF
Xét tam giác DOH có: E là trung điểm của OD
EK//OH (theo cách vẽ đường thẳng OH)
=> K là trung điểm của DH
=> DK=KH (1)
Xét hình thang EKCF có: O là trung điểm của EF (theo câu a)
OH//EK//CF (theo cách vẽ đường thẳng OH)
=> H là trung điểm của KC
=> KH=HC (2)
Từ (1) và (2) => DK=KH=HC
Lại có: KC=KH+HC => KC= DK+DK (vì DK=KH=HC)
=> KC=2DK => DK=1/2KC

2 tháng 11 2015

a)Ta có O giao điểm AC và BD trong hình bình hành ABCD (gt)

=> O là trung điểm AC và BD.

=> OD=OB

Mà OM=MD=\(\frac{1}{2}\)OD; ON=BN=\(\frac{1}{2}\)OB => OM=ON=OD=OB.

Xét hình bình hành ABCD có O trung điểm AC (hbh ABCD) và O trung điểm MN (OM=ON)

=> đpcm (điều phải chứng minh)

b) C/m tam giác ACE=ACF (cgc)(AC chung; \(\angle EAC=\angle FCA\) do song song; và cũng như vây với \(\angle ECA=\angle CAF\))

=>AE=FC mà \(AE \parallel FC\) do ăn theo hbh AMCN => đpcm

26 tháng 10 2017

Mình làm đấy bạn dựa theo nhé

26 tháng 10 2017
Mn ơi ai giúp mk đi mk đg gấp lắm cầu xin đó 🙏🙏🙏hu hu hu hu