K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác BMDN có 

BM//ND

BM=ND

Do đó: BMDN là hình bình hành

Suy ra: MD//BN

31 tháng 10 2020

A N B F C M D E O

a) Ta có : tứ giác ABCD là hình bình hành (gt)

\(\Rightarrow\)2 đường chéo cắt nhau tại trung điểm của mỗi đường

\(\Rightarrow\)O là trung điểm của AC (1)

và O là trung điểm của BD

\(\Rightarrow OB=OD\)

mà \(DE=BF\left(gt\right)\)

\(\Rightarrow OB-BF=OD-DE\)

\(\Rightarrow OF=OE\)

\(\Rightarrow\)O là trung điểm của EF (2)

Từ (1) và (2) \(\Rightarrow\)tứ giác AECF là hinh bình hành

b) Ta có : tứ giác AECF là hinh bình hành (cma)

\(\Rightarrow AE//CF\)

\(\Rightarrow AM//CN\left(3\right)\)

Ta có : tứ giác ABCD là hinh bình hành (gt)

\(\Rightarrow AB//CD\)

\(\Rightarrow AN//CM\left(4\right)\)

TỪ (3) và (4) \(\Rightarrow\)tứ giác ANCM là hình bình hành 

\(\Rightarrow AM=CN\)

c) Ta có : tứ giác ANMC là hinh bình hành (cmb)

\(\Rightarrow\)2 đường chéo cắt nhau tại trung điểm của mỗi đường

\(\Rightarrow\)O là trung điểm của NM

và O là trung điểm của AC

mà O là trung điểm của BD

\(\Rightarrow\)AC , NM , DB cùng đi qua 1 điểm