Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác AKCI có
AK//CI
AK=CI
Do đó: AKCI là hình bình hành
Xét ΔBAE có
K là trung điểm của AB
KF//AE
Do đó: F là trung điểm của BE
Suy ra: BF=FE(1)
Xét ΔDFC có
I là trung điểm của DC
IE//CF
Do đó: E là trung điểm của DF
Suy ra: DE=FE(2)
Từ (1) và (2) suy ra DE=FE=FB
đầu bài chỗ " đường chéo BD cắt AE" chắc là " đường chéo BD cắt AI" phải không bn???
a) ta có: AB = CD ( ABCD là h.b.h)
=> AK = IC \(\left(=\frac{1}{2}AB=\frac{1}{2}CD\right)\)
mà AK // IC
=> AKCI là hình bình hành ( dấu hiệu)
xét \(\Delta DFC\)
có: DI =IC (gt)
EI // FC ( AKCI là h.b.h)
=> EI là đường trung bình của \(\Delta DFC\)
=> DE = EF ( t/c')
cmtt với \(\Delta AEB\)ta có: EF = FB
=> DE=EF=FB
b) xét \(\Delta ABD\)
có: AM=MD
AK=KB
=> KM là đường trung bình của \(\Delta ABD\)
=> KM // BD và \(KM=\frac{1}{2}BD\)
cmtt với \(\Delta BCD\)ta có: IN//BD và \(IN=\frac{1}{2}BD\)
=> KM // IN (//BD)
\(KM=IN\left(=\frac{1}{2}BD\right)\)
=> KMIN là hình bình hành ( dấu hiệu)
A B R D C I E F
ABCD là hình bình hành
=> AB // CD ; AB = CD (1)
K là trung điểm của AB
\(\Rightarrow KA=KB=\frac{AB}{2}\) (2)
I là trung điểm của CD
\(\Rightarrow ID=IC=\frac{CD}{2}\) (3)
Từ (1) , (2) , (3) => AK // CI ; AK = CI
=> AKCI là hình bình hành
=> AI // CK
Xét \(\Delta CDF\) có :
ID = IC
IE // CF ( AI // CK )
=> DE = EF
Xét \(\Delta ABE\) có :
KA = KB ( giả thiết )
KF // AE
=> BF = FE
=> DE = EF = FB
Ta có: AB = CD (tính chất hình bình hành)
AK = 1/2 AB (gt)
CI = 1/2 CD (gt)
Suy ra: AK = CI (1)
Mặt khác: AB // CD (gt)
⇒ AK // CI (2)
Từ (1) và (2) suy ra tứ giác AKCI là hình bình hành (vì có một cặp cạnh đối song song và bằng nhau).
⇒ AI // CK
Trong ∆ ABE, ta có:
K là trung điểm của AB (gt)
AI // CK hay KF // AE nên BF = EF (tính chất đường trung bình tam giác)
Trong ∆ DCF, ta có:
I là trung điểm của DC (gt)
AI // CK hay IE // CF nên DE = EF (tính chất đường trung bình tam giác)
Suy ra: DE = EF = FB
Ta có: AB = CD (tính chất hình bình hành)
AK = 1/2 AB (gt)
CI = 1/2 CD (gt)
Suy ra: AK = CI (1)
Mặt khác: AB // CD (gt)
⇒ AK // CI (2)
Từ (1) và (2) suy ra tứ giác AKCI là hình bình hành (vì có một cặp cạnh đối song song và bằng nhau).
⇒ AI // CK
Trong ∆ ABE, ta có:
K là trung điểm của AB (gt)
AI // CK hay KF // AE nên BF = EF (tính chất đường trung bình tam giác)
xét tứ giác AKCI có:AK=IC(vì AB=DC)
AI song song IC
\(\rightarrow\)AKCI là hbh
\(\rightarrow\)AI song song KC
xét tg DFC:DI=IC
EI song song FC
\(\rightarrow\)DE=EF(vì EI là đg tb) (1)
cm tương tự tg ABE\(\rightarrow\)EF=FB (2)
từ (1),(2)\(\Rightarrow\)DE=EF=FB
Giúp mình với ạ!Mình đang cần rất gấp.
a: Xét tứ giác AKCI có
AK//CI
AK=CI
Do đó: AKCI là hình bình hành
Suy ra: AI//CK
Xét ΔAEB có
K là trung điểm của AB
KF//AE
Do đó: F là trung điểm của BE
Suy ra: BF=FE(1)
Xét ΔDFC có
I là trung điểm của DC
IE//CF
Do đó: E là trung điểm của DF
Suy ra: DE=EF(2)
Từ (1) và (2) suy ra DE=EF=FB