K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 9 2021

giúp đi ;c

 

1 tháng 9 2021

Xét ΔADH và ΔCBK lần lượt vuông tại H và K có:

AD=BC(tứ giác ABCD là hình bình hành)

\(\widehat{ADH}=\widehat{CBK}\) (2 góc so le trong do AD//BC)

=>ΔADH=ΔCBK(ch-gn)

=>DH=BK

Mà OH=OK(O là trung điểm HK)

=> DH+OH=BK+OK

=> DO=OB

=> O là trung điểm BD

=> O là giao điểm 2 đường chéo AC, BD của hình hình hành ABCD

=> A,O,C thẳng hàng

 

 

15 tháng 11 2018

nhanh 3 k miễn phí mai nhớ cổ vũ đội bóng việt nam nha

b) Xét hai tam giác vuông AHD và CKB có:
AD=BC
góc ADB=góc DBC (so le trong).
=> tam giác AHD=tam giác CKB    (ch-gn)
=> BH=CK( hai cạnh tương ứng)
Lấy M trung điểm  BD , nên MD=MB => MD-DH=MB-BK=> MH=MK, nên M Trung điểm HK
Vì ABCD là hình bình hành nên  AC cắt BD tại trung điểm M.
Hay M là Trung điểm AC, mà M trung điểm HK.
Nên AKCH là hình bình hành.

27 tháng 9 2019

cần câu c thôi giúp vs

19 tháng 3 2019

Bài tập: Hình bình hành | Lý thuyết và Bài tập Toán 8 có đáp án

Áp dụng tính chất đường chéo của hình bình hành AHCK

Hình bình hành AHCK có hai đường chéo AC và HK cắt nhau tại trung điểm mỗi đường

Do O là trung điểm của HK nên O cũng là trung điểm của AC

⇒ A, O, C thẳng hàng.

5 tháng 8 2018

a, ABCD là hình bình hành (gt) \(\Rightarrow\hept{\begin{cases}AD//BC\\AD=BC\end{cases}}\Rightarrow\hept{\begin{cases}\widehat{ADH}=\widehat{CBK}\\AD=BC\end{cases}}\)

\(\Delta ADH=\Delta CBK\left(ch-gn\right)\Rightarrow AH=CK\left(1\right)\) ( 2 cạnh tương ứng )

b, \(AH\perp BD,CK\perp BD\left(gt\right)\Rightarrow AH//CK\left(2\right)\)

ABCD là hình bình hành có O là trung điểm của đường chéo BD (gt) nên O là trung điểm của AC.

Từ (1) và (2) \(\Rightarrow AHCK\) là hình bình hành.

Mà O là trung điểm của đường chéo AC nên O là trung điểm của HK (t/c hình bình hành)

Chúc bạn học tốt.