Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
EP // MF (EP là đường trung bình trong ∆BAF) và EP = AF / 2 = MF => MENF là hình bình hành.
=> MP và EF cắt nhau tại trung điểm I.
FN // DE và FN = DE / 2 = QE => FQEN là hình bình hành => QN và EF cắt nhau tại trung điểm I
=> MP và QN cắt nhau tại trung điểm của chúng => MNPQ là hình bình hành
a: AE=EB=AB/2
CG=GD=CD/2
mà AB=CD
nên AE=EB=CG=GD
AH=HD=AD/2
BF=FC=BC/2
mà AD=BC
nên AH=HD=BF=FC
b: Xét ΔAHE và ΔCFG có
AH=CF
góc A=góc C
AE=CG
=>ΔAHE=ΔCFG
c: Xét ΔEBF và ΔGDH có
EB=GD
góc B=góc D
BF=DH
=>ΔEBF=ΔGDH
=>GH=EF
d: Xét tứ giác EHGF có
EH=FG
EF=GH
=>EHGF là hình bình hành
a: Xét tứ giác BEDF có
DE//BF
DE=BF
Do đó: BEDF là hình bình hành
b: Xét ΔAQD có
E là trung điểm của AD
EP//QD
Do đó: P là trung điểm của AQ
Suy ra;AP=PQ(1)
Xét ΔCPB có
F là trung điểm của BC
FQ//BP
Do đó: Q là trung điểm của CP
Suy ra: QC=PQ(2)
Từ (1) và (2) suy ra AP=PQ=QC
Lời giải:
a.
Vì $ABCD$ là hình bình hành nên $AB\parallel CD$
$\Rightarrow AG\parallel CH$
$AG=\frac{1}{2}AB; CH=\frac{1}{2}CD; AB=CD$ (theo tính chất hbh)
$\Rightarrow AG=CH$
Tứ giác $AGCH$ có $AG=CH$ và $AG\parallel CH$ nên đây là hbh
$\Rightarrow AH=CG$
b.
Hoàn toàn tương tự phần a, ta cm được $BF=DE$ và $BF\parallel DE$ nên $BFDE$ là hình bình hành
$\Rightarrow BE\parallel DF$
c.
Vì $BE\parallel DF$ nên $MN\parallel PQ(1)$
Vì $AGCH$ là hình bình hành nên $AH\parallel CG$
$\Rightarrow MQ\parallel NP(2)$
Từ $(1);(2)\Rightarrow MNPQ$ là hình bình hành.
Hình vẽ: