K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
23 tháng 7 2021

Lời giải:
a. 

Vì $ABCD$ là hình bình hành nên $AB\parallel CD$

$\Rightarrow AG\parallel CH$

$AG=\frac{1}{2}AB; CH=\frac{1}{2}CD; AB=CD$ (theo tính chất hbh)

$\Rightarrow AG=CH$

Tứ giác $AGCH$ có $AG=CH$ và $AG\parallel CH$ nên đây là hbh

$\Rightarrow AH=CG$

b.

Hoàn toàn tương tự phần a, ta cm được $BF=DE$ và $BF\parallel DE$ nên $BFDE$ là hình bình hành

$\Rightarrow BE\parallel DF$

c.

Vì $BE\parallel DF$ nên $MN\parallel PQ(1)$

Vì $AGCH$ là hình bình hành nên $AH\parallel CG$

$\Rightarrow MQ\parallel NP(2)$
Từ $(1);(2)\Rightarrow MNPQ$ là hình bình hành.

AH
Akai Haruma
Giáo viên
23 tháng 7 2021

Hình vẽ:

24 tháng 8 2016

EP // MF (EP là đường trung bình trong ∆BAF) và EP = AF / 2 = MF => MENF là hình bình hành. 
=> MP và EF cắt nhau tại trung điểm I. 
FN // DE và FN = DE / 2 = QE => FQEN là hình bình hành => QN và EF cắt nhau tại trung điểm I 
=> MP và QN cắt nhau tại trung điểm của chúng => MNPQ là hình bình hành 

25 tháng 8 2016

b làm sai đề bài rồi kìa

 

a: AE=EB=AB/2

CG=GD=CD/2

mà AB=CD

nên AE=EB=CG=GD

AH=HD=AD/2

BF=FC=BC/2

mà AD=BC

nên AH=HD=BF=FC

b: Xét ΔAHE và ΔCFG có

AH=CF

góc A=góc C

AE=CG

=>ΔAHE=ΔCFG

c: Xét ΔEBF và ΔGDH có

EB=GD

góc B=góc D

BF=DH

=>ΔEBF=ΔGDH

=>GH=EF

d: Xét tứ giác EHGF có

EH=FG

EF=GH

=>EHGF là hình bình hành

27 tháng 10 2021

Bị che một nửa góc rồi bạn ơi

a: Xét tứ giác BEDF có 

DE//BF

DE=BF

Do đó: BEDF là hình bình hành

b: Xét ΔAQD có 

E là trung điểm của AD

EP//QD

Do đó: P là trung điểm của AQ
Suy ra;AP=PQ(1)

Xét ΔCPB có 

F là trung điểm của BC

FQ//BP

Do đó: Q là trung điểm của CP

Suy ra: QC=PQ(2)

Từ (1) và (2) suy ra AP=PQ=QC