K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 10 2017

A B C D E F M N P G

Tứ giác ABCD là hình bình hành => AB//CD; AD//BC.

=> Giao điểm của AC; BD là trung điểm của mỗi đường

=> N là trung điểm BD (1)

Ta có: AE//BD. Mà AD//BE => Tứ giác AEBD là hình bình hành.

=> 2 đường chéo DE và AB cắt nhau tại trung điểm của mỗi đường.

=> M là trung điểm AB (2)

Tương tự: Tứ giác ABDF là hình bình hành

=> P là trung điểm AD (3)

Từ (1); (2) và (3) => G là trọng tâm của tam giác BAD.

=> AN, DM, BP đồng quy = >AC; DE; BF đồng quy (điều cần c/m).

23 tháng 7 2015

Xét tứ giác AEBD có :

DB//FA (gt) hay DB//AE

AD//BC ( ABCD là hình bình hành ) hay AD//BE 

suy ra , tứ giác AEBD là hình bình hành

 

 

HQ
Hà Quang Minh
Giáo viên
13 tháng 9 2023

a) Vì \(ABCD\) là hình bình hành nên \(AB//CD;AD//BC\)

\( \Rightarrow AB//DG;AB//CG;BK//AD;KC//AD\)

Xét tam giác \(DEG\) có \(AB//DG\), theo hệ quả của định lí Thales ta có:

\(\frac{{AE}}{{EG}} = \frac{{EB}}{{ED}}\) (1)

Xét tam giác \(ADE\) có \(BK//AD\), theo hệ quả của định lí Thales ta có:

\(\frac{{EK}}{{AE}} = \frac{{EB}}{{ED}}\) (2)

Từ (1) và (2) suy ra, \(\frac{{AE}}{{EG}} = \frac{{EK}}{{AE}} \Rightarrow A{E^2} = EG.EK\) (điều phải chứng minh).

b) Xét tam giác \(AED\) có:

\(AD//BK \Rightarrow \frac{{AE}}{{AK}} = \frac{{DE}}{{DB}}\)(3)

Xét tam giác \(AEB\) có

\(AB//BK \Rightarrow \frac{{AE}}{{AG}} = \frac{{BE}}{{BD}}\) (4)

Từ (3) và (4) ta được:

\(\frac{{AE}}{{AK}} + \frac{{AE}}{{AG}} = \frac{{DE}}{{BD}} + \frac{{BE}}{{BD}} = \frac{{BD}}{{BD}} = 1\)

Ta có: \(\frac{{AE}}{{AK}} + \frac{{AE}}{{AG}} = 1 \Rightarrow \frac{1}{{AE}} = \frac{1}{{AK}} + \frac{1}{{AG}}\) (chia cả hai vế cho \(AE\)) (điều phải chứng minh).

5 tháng 2 2017

hình vẽ hơi xấu mong bạn thông cảm 

do BK// AD nên \(\frac{EK}{AE}\)\(\frac{BE}{ED}\)     (1) 

do AB// DG nên \(\frac{AE}{EG}\)\(\frac{BE}{ED}\)      (2) 

từ (1) và (2) => \(\frac{EK}{AE}\)\(\frac{AE}{EG}\)

=> \(EK.EG=AE^2\)

nên \(EK.EG\) là không đổi

1 tháng 1 2017

Ta có DAOK = DCOH Þ OK =OH, DDOE = DBOF Þ OE = OF Þ EHFK là hình bình hành

2 tháng 8 2021

Ở đâu vậy bạn

27 tháng 11 2023

ABCD là hình bình hành

=>AC cắt BD tại trung điểm của mỗi đường

=>O là trung điểm chung của AC và BD

Xét ΔOAK và ΔOCH có

\(\widehat{OAK}=\widehat{OCH}\)(hai góc so le trong, AK//CH)

OA=OC

\(\widehat{AOK}=\widehat{COH}\)(hai góc đối đỉnh)

Do đó: ΔOAK=ΔOCH

=>OK=OH

=>O là trung điểm của KH

Xét ΔOAE và ΔOCF có

\(\widehat{EAO}=\widehat{FCO}\)(hai góc so le trong, AE//CF)

OA=OC

\(\widehat{AOE}=\widehat{COF}\)

Do đó: ΔOAE=ΔOCF

=>OE=OF

=>O là trung điểm của EF

Xét tứ giác EKFH có

O là trung điểm chung của EF và KH

=>EKFH là hình bình hành