K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 8 2023

Để chứng minh các phần của bài toán, ta sẽ sử dụng các định lí và quy tắc trong hình học.

a) Ta có thể chứng minh IM.IN = ID^2 bằng cách sử dụng định lí đường chéo trong hình bình hành. Theo định lí này, ta biết rằng đường chéo chia hình bình hành thành hai tam giác đồng dạng. Vì vậy, ta có thể sử dụng tỷ lệ đồng dạng để chứng minh IM.IN = ID^2.

b) Để chứng minh KM/KN = DM/DN, ta có thể sử dụng định lí đối xứng qua một điểm. Vì K là điểm đối xứng của D qua I, nên ta có thể sử dụng định lí này để chứng minh tỷ lệ KM/KN = DM/DN.

c) Để chứng minh AB.AE + AD.AF = AC^2, ta có thể sử dụng định lí tổng của các tam giác đồng dạng. Theo định lí này, ta biết rằng tổng các bình phương của các cạnh của một tam giác đồng dạng với một tam giác khác bằng nhau. Vì vậy, ta có thể sử dụng định lí này để chứng minh AB.AE + AD.AF = AC^2.

Tuy nhiên, để chứng minh các phần của bài toán một cách chính xác, ta cần có thêm thông tin về các góc và độ dài cạnh trong hình bình hành ABCD.

19 tháng 3 2020

A B C D E F N I M K G

a) AM//CD. Theo định lí Ta-let, ta có: \(\frac{IM}{ID}=\frac{AI}{IC}\)( 1 )

AD//CN. Theo định lí Ta-let, ta có : \(\frac{IA}{IC}=\frac{ID}{IM}\) ( 2 )

Từ ( 1 ) và ( 2 ) suy ra \(\frac{IM}{ID}=\frac{ID}{IN}\Rightarrow ID^2=IM.IN\)

b) Ta có : \(\frac{DM}{MN}=\frac{AM}{MB}\Rightarrow\frac{DM}{DM+MN}=\frac{AM}{AM+MB}\)

do đó : \(\frac{DM}{DN}=\frac{AM}{AB}\)( 3 )

Mà ID = IK ; ID2 = IM.IN

\(\Rightarrow IK^2=IM.IN\)\(\Rightarrow\frac{IK}{IM}=\frac{IN}{IK}\Rightarrow\frac{IK-IM}{IM}=\frac{IN-IK}{IK}\)

Do đó : \(\frac{MK}{IM}=\frac{KN}{IK}\Rightarrow\frac{KM}{KN}=\frac{IM}{IK}=\frac{IM}{ID}=\frac{AM}{CD}=\frac{AM}{AB}\)( 4 )

Từ ( 3 ) và ( 4 ) suy ra \(\frac{DM}{DN}=\frac{KM}{KN}\)

c) \(\Delta AGB~\Delta AEC\left(g.g\right)\)\(\Rightarrow\frac{AB}{AG}=\frac{AC}{AE}\Rightarrow AB.AE=AC.AG=AG\left(AG+GC\right)\)( 5 )

\(\Delta BGC~\Delta CFA\left(g.g\right)\)\(\Rightarrow\frac{AF}{GC}=\frac{AC}{BC}=\frac{AC}{AD}\)

\(\Rightarrow AF.AD=AC.GC=GC\cdot\left(AG+GC\right)\)( 6 )

Cộng ( 5 ) và ( 6 ) theo vế, ta được :

\(AB.AE+AF.AD=AG\left(GC+AG\right)+GC\left(AG+GC\right)=\left(AG+GC\right)^2=AC^2\)

19 tháng 3 2020

A M B N E C F D I G K

a/ Xét \(\Delta IMC\)có : MC // AD nên : \(\frac{IM}{ID}=\frac{IC}{IA}\)( hệ quả định lí Ta-let )

Xét \(\Delta IDC\)có : DC // AN nên : \(\frac{ID}{IN}=\frac{IC}{IA}\)( hệ quả định lí Ta-let )

Do đó : \(\frac{IM}{ID}=\frac{ID}{IN}\left(=\frac{IC}{IA}\right)\)

Vậy : \(IM.IN=ID^2\)

b/ Ta có : \(\frac{DM}{DN}=\frac{DM}{DM+MN}\)

\(=\frac{AD}{AD+NB}=\frac{AD}{CN}\)

\(=\frac{ID}{IN}=\frac{2.ID}{2.IN}\)

\(=\frac{KD}{KD+2.NK}\)

\(\Leftrightarrow\frac{DM}{DN}=\frac{KD}{DN+NK}\)

\(=\frac{KD-DM}{DN+NK-DN}=\frac{KM}{KN}\left(đpcm\right)\)

c) Xét \(\Delta ABG\)\(\Delta ACE\)có :

\(\widehat{AGB}=\widehat{AEC}\left(=90^0\right)\)

\(\widehat{A}:chung\)

=> tam giác AGB = tam giác ACE ( cgv-gn )

\(\Rightarrow\frac{AB}{AG}=\frac{AC}{AE}\)

\(\Rightarrow AB.AE=AC.AG\)

CM tương tự,ta có : \(\Delta BCG\)đồng dạng với \(\Delta ACF\)

\(\Rightarrow\frac{BC}{GC}=\frac{AC}{AF}\)

\(\Rightarrow AC.AF=AC.GC\)

\(\Rightarrow AD.AF=AC.AG\)( vì AD = BC )

Do đó : \(AB.AE+AD.AF=AC.AG+AC.GC\)

\(\Rightarrow AB.AE+AD.AF=AC.\left(AG+GC\right)\)

\(\Rightarrow AB.AE+AD.AF=AC.AC\)

Vậy AB.AE + AD.À = AC2

5 tháng 7 2015

a)Hình như đề sai. phải là:  \(\frac{KM}{KN}=\frac{DN}{DM}\Leftrightarrow\frac{KM}{KM+MN}=\frac{DN}{DN+NM}\Leftrightarrow\)đến đây để c/m đc thì phải c/m KM=DN

hình nè: 

b) dễ dàng c/m tam giác AGB đồng dạng tam giác AEC

=> \(\frac{AG}{AE}=\frac{AB}{AC}\Rightarrow AE.AB=AG.AC\)

đề câu này cũng sai. phải là: AB.AE=AD.AF hay là một tỉ số nào đó

theo chị em phải c/m tỉ số thứ 2 đó = CG.AC

=> cộng vào sẽ được AC(AG+CG)=AC ^2

đến  đây chị chỉ giúp được vậy thôi. bài khó quá

27 tháng 6 2018

A B C D H K I M N J P 1 2

a) Ta có: Tứ giác ABCD là hình bình hành => ^ABC = ^ADC => 1800 - ^ABC = 1800 -^ADC

=> ^CBH = ^CDK. 

Xét \(\Delta\)CHB và \(\Delta\)CKD: ^CHB=^CKD (=900); ^CBH=^CDK => \(\Delta\)CHB ~ \(\Delta\)CKD (g.g)

=> \(\frac{CH}{CK}=\frac{CB}{CD}\Rightarrow\frac{CH}{CB}=\frac{CK}{CD}\)(đpcm).

b) Ta có: \(\frac{CH}{CB}=\frac{CK}{CD}\)(câu a) nên \(\frac{CH}{CB}=\frac{CK}{AB}\)(Do CD=AB) hay \(\frac{CB}{CH}=\frac{AB}{CK}\)

Thấy: ^ABC là góc ngoài \(\Delta\)CHB => ^ABC = ^CHB + ^HCB = 900 + ^HCB (1)

BC // AD; CK vuông góc AD tại K => CK vuông góc BC (Quan hệ song song vuông góc)

=> ^BCK=900 => ^KCH = ^HCB + ^BCK = ^HCB + 900 (2)

Từ (1) và (2) => ^ABC = ^KCH

Xét \(\Delta\)ABC và \(\Delta\)KCH: ^ABC = ^KCH; \(\frac{CB}{CH}=\frac{AB}{CK}\)=> \(\Delta\)ABC ~ \(\Delta\)KCH (c.g.c) (đpcm).

c) Gọi P là hình chiếu vuông góc của D lên đường chéo AC.

Xét \(\Delta\)APD và \(\Delta\)AKC: ^APD = ^AKC (=900); ^A1 chung => \(\Delta\)APD ~ \(\Delta\)AKC (g.g)

=> \(\frac{AP}{AK}=\frac{AD}{AC}\Rightarrow AD.AK=AP.AC\)(3)

Xét \(\Delta\)DPC và \(\Delta\)CHA: ^DPC = ^CHA (=900); ^DCP=^A2 (Do AB//CD)

=> \(\Delta\)DPC ~ \(\Delta\)CHA (g.g) => \(\frac{CD}{AC}=\frac{CP}{AH}\Rightarrow CD.AH=CP.AC\)

Mà CD=AB nên \(AB.AH=CP.AC\)(4)

Cộng (3) với (4) theo vế: \(AB.AH+AD.AK=CP.AC+AP.AC=AC.\left(CP+AP\right)\)

\(\Rightarrow AB.AH+AD.AK=AC.AC=AC^2\)(đpcm).

d) Áp dụng hệ quả ĐL Thales ta được: \(\frac{ID}{IM}=\frac{IC}{IA}\)(AM//CD)

Lại có: \(\frac{IC}{IA}=\frac{IN}{ID}\)(CN//AD). Suy ra: \(\frac{ID}{IM}=\frac{IN}{ID}\Rightarrow IM.IN=ID^2\)(đpcm).

e) Ta có: \(\frac{ID}{IM}=\frac{IN}{ID}\)(cmt). Mà ID=IJ.

=> \(\frac{IJ}{IM}=\frac{IN}{IJ}\Rightarrow\frac{IM}{IJ}=\frac{IJ}{IN}=\frac{IM-IJ}{IJ-IN}=\frac{JM}{JN}\)(T/c dãy tỉ số bằng nhau)

\(\Rightarrow\frac{ID}{IN}=\frac{JM}{JN}\). Lại có: \(\frac{ID}{IN}=\frac{AD}{CN}=\frac{BC}{CN}=\frac{DM}{DN}\)(Hệ quả ĐL Thales)

Từ đó suy ra: \(\frac{JM}{JN}=\frac{DM}{DN}\)(đpcm).

17 tháng 12 2022

a: Xét tứ giác ADEC có

Ilà trung điểm chung của AE và DC

nên ADEC là hình bình hành

b: Xét tứ giác AMDN có

góc AMD=góc AND=góc MAN=90 độ

AD là phân giác của góc MAN

Do đó: AMDN là hình vuông

c: DE//AC

DM//AC

Do đó: D,M,E thẳng hàng