K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

a) Áp dụng tính chất trọng tâm ta có: \(\overrightarrow {MA}  + \overrightarrow {MD}  + \overrightarrow {MB}  = \overrightarrow 0 \)

Suy ra M là trọng tâm của tam giác ADB

Vậy nằm trên đoạn thẳng AO sao cho \(AM = \frac{2}{3}AO\)

b) Tiếp tục áp dụng tính chất trọng tâm \(\overrightarrow {ND}  + \overrightarrow {NB}  + \overrightarrow {NC}  = \overrightarrow 0 \)

Suy ra N là trọng tâm của tam giác BCD

Vậy nằm trên đoạn thẳng OD sao cho \(ON = \frac{1}{3}OD\)

c) Áp dụng tính chất trung điểm ta có: \(\overrightarrow {PM}  + \overrightarrow {PN}  = \overrightarrow 0 \)

Suy ra là trung điểm của đoạn thẳng MN

Vậy điểm trùng với điểm O.

Gọi O là tâm bình hành

\(\overrightarrow{MA}+2\overrightarrow{MB}+2\overrightarrow{MC}+\overrightarrow{MD}=\overrightarrow{0}\Leftrightarrow6\overrightarrow{MO}+\overrightarrow{OA}+2\overrightarrow{OB}+2\overrightarrow{OC}+\overrightarrow{OD}=\overrightarrow{0}\)

Dễ dàng nhìn ra trong hình bình hành ABCD tâm O thì: \(\hept{\begin{cases}\overrightarrow{OA}+\overrightarrow{OD}=-\frac{1}{2}\overrightarrow{AB}\\\overrightarrow{OB}+\overrightarrow{OD}=\frac{1}{2}\overrightarrow{AB}\end{cases}}\)--->thế lên trên:

\(\Rightarrow6\overrightarrow{MO}-\frac{1}{2}\overrightarrow{AB}+\overrightarrow{AB}=\overrightarrow{0}\Leftrightarrow\overrightarrow{OM}=\frac{1}{12}\overrightarrow{AB}\)---> Dễ dàng có được M là điểm cố định (Vì các điểm O,A,B đều cố định)

Vậy điểm M được xác định bằng cách lấy đường thẳng qua O song song AB rồi trong nửa mặt phẳng bờ là BD có chứa điểm C ta lấy điểm M thuộc đường thẳng vừa dựng được sao cho đoạn OM có độ dài đúng bằng 1/12 độ dài AB.

3 tháng 10 2020

Gọi O là giao điểm hai đoạn thẳng AC và BD.

Dựng điểm M như sau:

Trên nửa mặt phẳng bờ AC phía B, vẽ tia Ot song song AB.

Trên tia này, Bạn lấy điểm M cách O một đoạn bằng MỘT PHẦN SÁU AB.

Đó là điểm cần tìm.

 
  

 
  
 
 

 
 

12 tháng 5 2017

a) \(\overrightarrow{MA}-\overrightarrow{MB}=\overrightarrow{MA}+\overrightarrow{BM}=\overrightarrow{BA}\)
Vậy bất kì điểm M nào nằm trên mặt phẳng cũng thỏa mãn:
\(\overrightarrow{MA}-\overrightarrow{MB}=\overrightarrow{BA}\).
b) Do \(\overrightarrow{MA}-\overrightarrow{MB}=\overrightarrow{MA}+\overrightarrow{BM}=\overrightarrow{BA}\) nên không tồn tại điểm M thỏa mãn: \(\overrightarrow{MA}-\overrightarrow{MB}=\overrightarrow{AB}\).
c) \(\overrightarrow{MA}+\overrightarrow{MB}=\overrightarrow{0}\) nên M là trung điểm của AB.

9 tháng 10 2017

a,, CÓ \(\overrightarrow{MA}-\overrightarrow{MB}=\overrightarrow{BA}\Leftrightarrow\overrightarrow{BA}=\overrightarrow{BA}\)

Vậy với mọi điểm M thì đều thõa mãn

b, có \(\overrightarrow{MA}-\overrightarrow{MB}=\overrightarrow{AB}\Leftrightarrow\overrightarrow{BA}=\overrightarrow{AB}\) ( không thõa mãn)

vậy không có điểm M nào thõa mãn điều kện trên

c, có \(\overrightarrow{MA}+\overrightarrow{MB}=\overrightarrow{O}\) \(\Rightarrow\) M là trung điểm của AB

11 tháng 8 2018

b) \(VP=\overrightarrow{MC}-\overrightarrow{MD}=\overrightarrow{DC}=\overrightarrow{AB}=VP\left(đpcm\right)\)

c) \(\overrightarrow{BD}-\overrightarrow{BA}=\overrightarrow{OC}-\overrightarrow{OB}\\ \Leftrightarrow\overrightarrow{AD}=\overrightarrow{BC}\left(đúng\right)\\ \)

d) \(\overrightarrow{BC}-\overrightarrow{BD}+\overrightarrow{BA}=\overrightarrow{0}\\ \Rightarrow\overrightarrow{DC}+\overrightarrow{BA}=\overrightarrow{0}\\ \Leftrightarrow\overrightarrow{0}=\overrightarrow{0}\left(đúng\right)\)

AH
Akai Haruma
Giáo viên
27 tháng 8 2017

Lời giải:

a) Bạn vẽ hình ra cho dễ tưởng tượng nhé!

Để ý rằng: \(\left\{\begin{matrix} \overrightarrow{MA}=\overrightarrow{MO}+\overrightarrow {OA}\\ \overrightarrow{MB}=\overrightarrow{MO}+\overrightarrow {OB}\\ \overrightarrow{MC}=\overrightarrow{MO}+\overrightarrow {OC}\\ \overrightarrow{MD}=\overrightarrow{MO}+\overrightarrow {OD}\end{matrix}\right.\)

\(\Rightarrow \overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}+\overrightarrow{MD}=4\overrightarrow{MO}+\overrightarrow{OA}+\overrightarrow{OC}+\overrightarrow{OB}+\overrightarrow{OD}\)

Vì $O$ là tâm của hình chữ nhật $ABCD$ nên :

\(\overrightarrow{OA}+\overrightarrow{OC}=\overrightarrow{0}\); \(\overrightarrow {OB}+\overrightarrow{OD}=\overrightarrow{0}\) (các cặp vector đối nhau)

Do đó, \(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}+\overrightarrow{MD}=4\overrightarrow{MO}\)

Suy ra \(\overrightarrow {MS}=4\overrightarrow {MO}\), kéo theo \(M,O,S\) thẳng hàng (theo thứ tự)

Do đó \(MS\) luôn quay quanh một điểm cố định là $O$

b)

Lấy điểm \(I\) thỏa mãn: \(\overrightarrow{IA}+\overrightarrow{IB}+\overrightarrow{IC}+\overrightarrow{ID}=0\)

\(A,B,C,D\) cố định nên \(I\) cố định.

Ta có:

\(|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}+\overrightarrow{MD}|=|\overrightarrow{MI}+\overrightarrow{IA}+\overrightarrow{MI}+\overrightarrow{IB}+\overrightarrow{MI}+\overrightarrow{IC}+\overrightarrow{MI}+\overrightarrow{ID}|\)

\(=|4\overrightarrow{MI}|=a\Rightarrow \overrightarrow{MI}=\frac{a}{4}\)

Do đó tập hợp các điểm biểu diễn \(M\) là đường tròn tâm $I$ bán kính \(\frac{a}{4}\)

c) Ta có:

\(|\overrightarrow{NA}+\overrightarrow{NB}|=|\overrightarrow{NC}+\overrightarrow{ND}|\)

\(\Leftrightarrow |\overrightarrow{NO}+\overrightarrow {OA}+\overrightarrow{NO}+\overrightarrow{OB}|=|\overrightarrow{NO}+\overrightarrow{OC}+\overrightarrow{NO}+\overrightarrow{OD}|\)

\(\Leftrightarrow |2\overrightarrow{NO}+\overrightarrow {OA}+\overrightarrow{OB}|=|2\overrightarrow{NO}+\overrightarrow{OC}+\overrightarrow{OD}|\) \((1)\)

Gọi \(I,K\) là trung điểm của \(AB,CD\) thì:

\(\left\{\begin{matrix} \overrightarrow{IA}+\overrightarrow{IB}=0\\ \overrightarrow {KC}+\overrightarrow{KD}=0\end{matrix}\right.\)

\((1)\Leftrightarrow |2\overrightarrow{NO}+\overrightarrow{OI}+\overrightarrow{IA}+\overrightarrow{OI}+\overrightarrow{IB}|=|2\overrightarrow{NO}+\overrightarrow{OK}+\overrightarrow{KC}+\overrightarrow{OK}+\overrightarrow{KD}|\)

\(\Leftrightarrow |2\overrightarrow{NO}+2\overrightarrow{OI}|=|2\overrightarrow{NO}+2\overrightarrow{OK}|\)

\(\Leftrightarrow |\overrightarrow{NO}+\overrightarrow{OI}|=|\overrightarrow{NO}+\overrightarrow{OK}|\Leftrightarrow |\overrightarrow{NI}|=|\overrightarrow{NK}|\)

Do đó tập hợp điểm N nằm trên đường trung trực của \(IK\)

28 tháng 8 2017

cám ơn nhiều

27 tháng 7 2019
https://i.imgur.com/Ofq4upt.jpg
Giúp e những bài này với ạ1) Cho tam giác ABC. GỌI N, H, V là ba điểm thỏa mãn:\(\overrightarrow{NB} \)-2\(\overrightarrow{NC} \)=\(\overrightarrow{0} \)\(2\overrightarrow{HC}+\overrightarrow{HA}=\overrightarrow{0} \)\(\overrightarrow{VA}+\overrightarrow{VB}=\overrightarrow{0} \)b) chứng minh n,h,v thẳng hàng2) Cho tam giác ABC nội tiếp đường tròn tâm O. Gọi G và H lần lượt là trọng tâm và trực tâm của tam giác ABC. Còn M là trung...
Đọc tiếp

Giúp e những bài này với ạ

1) Cho tam giác ABC. GỌI N, H, V là ba điểm thỏa mãn:

\(\overrightarrow{NB} \)-2\(\overrightarrow{NC} \)=\(\overrightarrow{0} \)

\(2\overrightarrow{HC}+\overrightarrow{HA}=\overrightarrow{0} \)

\(\overrightarrow{VA}+\overrightarrow{VB}=\overrightarrow{0} \)

b) chứng minh n,h,v thẳng hàng

2) Cho tam giác ABC nội tiếp đường tròn tâm O. Gọi G và H lần lượt là trọng tâm và trực tâm của tam giác ABC. Còn M là trung điểm BC.

a) so sánh 2 vecto \(\overrightarrow{HA},\overrightarrow{MO} \)

b) Chứng minh rằng :

i) \(\overrightarrow{HA}+\overrightarrow{HB}+\overrightarrow{HC}=2\overrightarrow{HO} \)

ii)\(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=3\overrightarrow{OG} \)

3)Cho tam giác ABC và một điểm M thỏa mãn hệ thức \(\overrightarrow{BM}=2\overrightarrow{MC} \). Gọi BN là trung tuyến của tam giác ABC và I là trung điểm BN.

Chứng Minh a)\(2\overrightarrow{MB}+\overrightarrow{MA}+\overrightarrow{MC}=4\overrightarrow{MI} \)

b) \(\overrightarrow{AI}+\overrightarrow{BM}+\overrightarrow{CN}=\overrightarrow{CI}+\overrightarrow{BN}+\overrightarrow{AM} \)

4)Cho tam giác ABC, , lấy các điểm M, N, P sao cho \(\overrightarrow{MA}+3\overrightarrow{MB}=6\overrightarrow{NP}-\overrightarrow{NC}=\overrightarrow{PC}+2\overrightarrow{PA}=\overrightarrow{0} \)

a) Biểu diễn \(\overrightarrow{AN} \) qua \(\overrightarrow{AM} \) và \(\overrightarrow{AP} \)

b)Chứng minh M,N,P thẳng hàng

 

0