Bài 1: Cho △ ABC vuông ở A (AB<AC). Kẻ đường cao AH. Gọi E, N, M theo thứ tự là trung điểm của AB, AC và BCa) Chứng minh : Tứ giác EHMN là hình thang cânb) Chứng minh: HE ⊥ HNc) Từ A kẻ đường thẳng song song với BC cắt tia ME, MN theo thứ tự ở K và F. Chứng minh: Tứ giác AMBK là hình thoid) Chứng minh: AM, EN,BF và KC đồng quyBài 2: Cho hình bình hành ABCD tâm O. Trên đoạn OD lấy điểm E.Kẻ CF // AE (F ϵ...
Đọc tiếp
Bài 1: Cho △ ABC vuông ở A (AB<AC). Kẻ đường cao AH. Gọi E, N, M theo thứ tự là trung điểm của AB, AC và BC
a) Chứng minh : Tứ giác EHMN là hình thang cân
b) Chứng minh: HE ⊥ HN
c) Từ A kẻ đường thẳng song song với BC cắt tia ME, MN theo thứ tự ở K và F. Chứng minh: Tứ giác AMBK là hình thoi
d) Chứng minh: AM, EN,BF và KC đồng quy
Bài 2: Cho hình bình hành ABCD tâm O. Trên đoạn OD lấy điểm E.Kẻ CF // AE (F ϵ BD)
a) Chứng minh: Tứ giác AFCE là hình bình hành
b) Cho AF cắt BC tại M, CE cắt AD tại N. Chứng minh: M,O,N thẳng hàng
c) Lấy K đối xứng C qua E. Xác định vị trí của E trên OD để tứ giác AKDO là hình bình hành
d) Lấy I đối xứng với A qua D, lấy H đối xứng A qua B. Hình Bình hành ABCD phải có thêm điều kiện gì để I và H đối xứng với nhau qua đường thẳng AC?
MÌNH CẦN GẤP!! CÁC BẠN GIÚP MÌNH NHA!!!
để DOFA là hình bình hành <=> DO=AF( vì có AF//DO)
<=> 2EO=DO( vì EO là đượng trung bình nên 2EO=AF)
<=> E là trung điểm của dO
cậu tự vẽ hình nhé
a) ta có O,E lần lượt là trung điểm của AC,CF
nên OE là đường trung bình của tam giác AFC => OE//AF =>BD//AF