K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

a) \(\overrightarrow {OA}  - \overrightarrow {OB}  = \overrightarrow {BA} \)

\(\overrightarrow {OD}  - \overrightarrow {OC}  = \overrightarrow {CD} \)

Do ABCD là hình bình hành nên \(\overrightarrow {BA}  = \overrightarrow {CD} \)

Suy ra, \(\overrightarrow {OA}  - \overrightarrow {OB}  = \overrightarrow {OD}  - \overrightarrow {OC} \)

b)  \(\overrightarrow {OA}  - \overrightarrow {OB}  + \overrightarrow {DC}  = (\overrightarrow {OD}  - \overrightarrow {OC})  + \overrightarrow {DC}  \\= \overrightarrow {CD}  + \overrightarrow {DC} = \overrightarrow {CC} = \overrightarrow 0 \)

12 tháng 5 2017

A B C D O
\(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}=\left(\overrightarrow{OA}+\overrightarrow{OC}\right)+\left(\overrightarrow{OB}+\overrightarrow{OC}\right)\)
\(=\overrightarrow{0}+\overrightarrow{0}\)(Theo tính chất hình bình hành).
\(=\overrightarrow{0}\) .

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

a)  ABCD là hình bình hành nên \(\overrightarrow {DC}  = \overrightarrow {AB} \)

\( \Rightarrow \overrightarrow {BA}  + \overrightarrow {DC}  = \overrightarrow {BA}  + \overrightarrow {AB}  = \overrightarrow {BB}  = \overrightarrow 0 \)

b) \(\overrightarrow {MA}  + \overrightarrow {MC}  = \left( {\overrightarrow {MB}  + \overrightarrow {BA} } \right) + \left( {\overrightarrow {MD}  + \overrightarrow {DC} } \right)\)

\(= \left( {\overrightarrow {MB}  + \overrightarrow {MD} } \right) + \left( {\overrightarrow {BA}  + \overrightarrow {DC}} \right)\)

\(= \overrightarrow {MB}  + \overrightarrow {MD} \) (Vì \(\overrightarrow {BA}  + \overrightarrow {DC}  = \overrightarrow {0} \))

 

12 tháng 5 2017

A B C D O M N E F
a) Giả sử \(\overrightarrow{OA}+\overrightarrow{OC}=\overrightarrow{OB}+\overrightarrow{OD}\)
\(\Leftrightarrow\overrightarrow{OA}+\overrightarrow{OC}-\overrightarrow{OB}-\overrightarrow{OD}=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{OA}+\overrightarrow{BO}+\overrightarrow{OC}+\overrightarrow{DO}=\overrightarrow{0}\)
\(\Leftrightarrow\left(\overrightarrow{BO}+\overrightarrow{OA}\right)+\left(\overrightarrow{DO}+\overrightarrow{OC}\right)=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{BA}+\overrightarrow{DC}=\overrightarrow{0}\) (đúng do tứ giác ABCD là hình bình hành).
b) \(\overrightarrow{ME}+\overrightarrow{FN}=\overrightarrow{MA}+\overrightarrow{AE}+\overrightarrow{FC}+\overrightarrow{CN}\)
\(=\left(\overrightarrow{MA}+\overrightarrow{CN}\right)+\left(\overrightarrow{AE}+\overrightarrow{FC}\right)\).
Do các tứ giác AMOE, MOFB, OFCN, EOND cũng là các hình bình hành.
Vì vậy \(\overrightarrow{CN}=\overrightarrow{FO}=\overrightarrow{BM};\overrightarrow{FC}=\overrightarrow{ON}=\overrightarrow{ED}\).
Do đó: \(\overrightarrow{ME}+\overrightarrow{FN}=\left(\overrightarrow{MA}+\overrightarrow{CN}\right)+\left(\overrightarrow{AE}+\overrightarrow{FC}\right)\)
\(=\left(\overrightarrow{MA}+\overrightarrow{BM}\right)+\left(\overrightarrow{AE}+\overrightarrow{ED}\right)\)
\(=\overrightarrow{BA}+\overrightarrow{AD}=\overrightarrow{BD}\) (Đpcm).

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

a) \(\overrightarrow {MA}  + \overrightarrow {MB}  + \overrightarrow {MC}  + \overrightarrow {MD}  = 4\overrightarrow {MO} \)

\( \Leftrightarrow \overrightarrow {MO}  + \overrightarrow {OA}  + \overrightarrow {MO}  + \overrightarrow {OB}  + \overrightarrow {MO}  + \overrightarrow {OC}  + \overrightarrow {MO}  + \overrightarrow {OD}  = 4\overrightarrow {MO} \)

\( \Leftrightarrow 4\overrightarrow {MO}  + \left( {\overrightarrow {OA}  + \overrightarrow {OB} } \right) + \left( {\overrightarrow {OC}  + \overrightarrow {OD} } \right) = 4\overrightarrow {MO} \)

\( \Leftrightarrow 4\overrightarrow {MO}  + \overrightarrow 0  + \overrightarrow 0  = 4\overrightarrow {MO} \\ \Leftrightarrow 4\overrightarrow {MO}  = 4\overrightarrow {MO} \) (luôn đúng)

(vì O là giao điểm 2 đường chéo nên là trung điểm của AB, CD)

b) ABCD là hình bình hành nên ta có \(\overrightarrow {AB}  + \overrightarrow {AD}  = \overrightarrow {AC} \)

Suy ra \(\)\(\overrightarrow {AB}  + \overrightarrow {AC}  + \overrightarrow {AD} = \left( {\overrightarrow {AB}  + \overrightarrow {AD} } \right) + \overrightarrow {AC}  = \overrightarrow {AC}  + \overrightarrow {AC}  = 2\overrightarrow {AC} \) (đpcm)

AH
Akai Haruma
Giáo viên
1 tháng 10 2020

Lời giải:

Gọi $M,N$ lần lượt là trung điểm $AB, CD$. Ta có:

$\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}=\overrightarrow{OM}+\overrightarrow{MA}+\overrightarrow{OM}+\overrightarrow{MB}+\overrightarrow{ON}+\overrightarrow{NC}+\overrightarrow{ON}+\overrightarrow{ND}$

$=2\overrightarrow{OM}+2\overrightarrow{ON}=\overrightarrow{0}$

$\Rightarrow \overrightarrow{OM}=-\overrightarrow{ON}$ nên $O$ là trung điểm $MN$

Tam giác $OAB$ cân tại $O$ có $OM$ là trung tuyến đồng thời là đường cao

$\Rightarrow OM\perp AB$. Hoàn toàn tương tự $ON\perp CD$

Mà $O,M,N$ thẳng hàng nên $AB\parallel CD(1)$

Tương tự, đặt $P,Q$ là trung điểm $AD, BC$ ta có:

$AD\paralle BC(2)$

Từ $(1);(2)\Rightarrow ABCD$ là hình bình hành.

$MN$ là đường trung bình của hbh $ABCD$ nên $MN\parallel BC$. Mà ở trên ta chỉ ra $OM\perp AB; O,N,M$ thẳng hàng nên $AB\perp BC$

Hình bình hành $ABCD$ có 2 cạnh kề vuông góc nên là hình chữ nhật.

AH
Akai Haruma
Giáo viên
1 tháng 10 2020

Bạn tham khảo lời giải tại đây:

Câu hỏi của Thư Nguyễn - Toán lớp 10 | Học trực tuyến

NV
24 tháng 8 2021

\(\overrightarrow{AB}+\overrightarrow{CD}=\overrightarrow{AB}+\overrightarrow{CB}+\overrightarrow{BD}=\overrightarrow{AB}+\overrightarrow{BD}+\overrightarrow{CB}=\overrightarrow{AD}+\overrightarrow{CB}\)

\(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}=\left(\overrightarrow{OE}+\overrightarrow{EA}\right)+\left(\overrightarrow{OF}+\overrightarrow{FB}\right)+\left(\overrightarrow{OE}+\overrightarrow{EC}\right)+\left(\overrightarrow{OF}+\overrightarrow{FD}\right)\)

\(=2\left(\overrightarrow{OE}+\overrightarrow{EF}\right)+\left(\overrightarrow{EA}+\overrightarrow{EC}\right)+\left(\overrightarrow{FB}+\overrightarrow{FD}\right)\)

\(=2.\overrightarrow{0}+\overrightarrow{0}+\overrightarrow{0}=\overrightarrow{0}\)

24 tháng 9 2023

Tham khảo:

Dễ thấy: \(\overrightarrow {OA}  = \overrightarrow {OM}  + \overrightarrow {MA} \); \(\overrightarrow {OB}  = \overrightarrow {OM}  + \overrightarrow {MB} \)

Tương tự: \(\overrightarrow {OC}  = \overrightarrow {ON}  + \overrightarrow {NC} \); \(\overrightarrow {OD}  = \overrightarrow {ON}  + \overrightarrow {ND} \)

\(\begin{array}{l} \Rightarrow \overrightarrow {OA}  + \overrightarrow {OB}  + \overrightarrow {OC}  + \overrightarrow {OD}  = \left( {\overrightarrow {OM}  + \overrightarrow {MA} } \right) + \left( {\overrightarrow {OM}  + \overrightarrow {MB} } \right) + \left( {\overrightarrow {ON}  + \overrightarrow {NC} } \right) + \left( {\overrightarrow {ON}  + \overrightarrow {ND} } \right)\\ = \left( {\overrightarrow {OM}  + \overrightarrow {OM}  + \overrightarrow {MA}  + \overrightarrow {MB} } \right) + \left( {\overrightarrow {ON}  + \overrightarrow {ON}  + \overrightarrow {NC}  + \overrightarrow {ND} } \right)\\ = \overrightarrow {OM}  + \overrightarrow {OM}  + \overrightarrow {ON}  + \overrightarrow {ON} \\ = \left( {\overrightarrow {OM}  + \overrightarrow {ON} } \right) + \left( {\overrightarrow {OM}  + \overrightarrow {ON} } \right)\\ = \overrightarrow 0  + \overrightarrow 0 \\ = \overrightarrow 0 .\end{array}\)