Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Vì ABCD là hình bình hành
=> OA=OC, OB=OD
Ta có: OM=OA/2
OP=OC/2
Mà OA=OC => OM=OP
Cm tương tự ta được OQ=ON
Tứ giác MNPQ có OM=OP. OQ=ON
=> MNPQ là hình bình hành
2) Tứ giác ANCQ có OA=OC (cmt), OQ=ON (cmt)
Suy ra tứ giác ANCQ là hình bình hành
Tứ giác BPDM có OB=OD (cmt), OM=OP (cmt)
Suy ra tứ giác BPDM là hình bình hành
a: Xét ΔBAD có
M,Q lần lượt là tđiểm của AB và AD
nên MQ là đường trung bình
=>MQ//BD và MQ=BD/2(1)
Xét ΔBCD có
N,P lần lượt là trung điểm của CB và CD
nên NP là đường trung bình
=>NP//BD và NP=BD/2(2)
Từ (1) và (2) suy a MQ//NP và MQ=NP
=>MNPQ là hình bình hành
b: Xét ΔABC có
M,N lần lượt là trung điểm của BA và BC
nên MN là đường trung bình
=>MN=AC/2 và MN//AC
Để MNPQ là hình chữ nhật thì MN vuông góc với MQ
=>AC vuông góc với BD
a) Vì ABCD là hình thoi(gt). Mà AC và BD cắt nhau tại O
=> O là trung điểm của AC và BD (t/c của hình bình hành)
=> OB=OD. Mà BE=DF(gt)
=> OB-BE=OD-DF => OE=OF. Mà O nằm giữa E và F
=> O là trung điểm của EF
Xét tứ giác AECF có: AC cắt EF tại O
Mà O là trung điểm của AC( c/m trên )
O là trung điểm của EF( c/m trên )
=> AECF là hình bình hành (Tứ giác có 2 đ/c cắt nhau tại trung điểm của mỗi đg là hình bình hành)
b) Để AECF là hình thoi => \(AC\perp EF\) tại O
=> \(AC\perp BD\) tại O \(\left(E,F\in\left(O\right)\right)\)
Xét hình bình hành ABCD có: \(AC\perp BD\) tại O (c/m trên)
=> ABCD là hình thoi (Hình bình hành có 2 đ/c vuông góc là hình thoi)
Vậy để AECF là hình thoi thì ABCD là hình thoi
a) Vì ABCD là hình thoi(gt). Mà AC và BD cắt nhau tại O
=> O là trung điểm của AC và BD (t/c của hình bình hành)
=> OB=OD. Mà BE=DF(gt)
=> OB-BE=OD-DF => OE=OF. Mà O nằm giữa E và F
=> O là trung điểm của EF
Xét tứ giác AECF có: AC cắt EF tại O
Mà O là trung điểm của AC( c/m trên )
O là trung điểm của EF( c/m trên )
=> AECF là hình bình hành (Tứ giác có 2 đ/c cắt nhau tại trung điểm của mỗi đg là hình bình hành)
b) Để AECF là hình thoi => AC⊥EFAC⊥EF tại O
=> AC⊥BD tại O (E,F∈(O)
Xét hình bình hành ABCD có: AC⊥BDAC⊥BD tại O (c/m trên)
=> ABCD là hình thoi (Hình bình hành có 2 đ/c vuông góc là hình thoi)
Vậy để AECF là hình thoi thì ABCD là hình thoi