K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 2 2018

a) Xét tam giác ABH và tam giác CID có :

AB = CD ( gt )

\(\widehat{AHB}=\widehat{CID}=90^0\)

\(\widehat{BAH}=\widehat{ICD}\)

\(\Rightarrow\)\(\Delta ABH=\Delta CID\left(g-c-g\right)\)

\(\Rightarrow\)\(AH=CI\)

c) \(CM\perp AB\Rightarrow CM\perp CD\)

\(CN\perp AD\Rightarrow CN\perp BC\)

Xét tam giác BCM và tam giác CDN có :

\(\widehat{BMC}=\widehat{CND}\)

\(\widehat{MCB}=\widehat{DCN}\)

Suy ra tam giác BCM = tam giác CDN

\(\Rightarrow\)\(\frac{BC}{DC}=\frac{CM}{CN}\)

mà BC = AD và DC = AB

Suy ra AB.CM = CN.AD

22 tháng 2 2018

a. Xét tam giác ABH và tam giác CDI vuông lần lượt tại H và I có:

AB = CD ( gt)

góc ABH = ICD (gt)
Do đó tam giác ABH = CDI ( cạnh huyền- góc nhọn)

=> AH = CI ( 2 cạnh tương ứng)

22 tháng 2 2018

Xét tam giác ABH và tam giác ACM có:

góc A chung

góc AHB = góc AMC = 90o

Do đó tam giác ABH đồng dạng tam giác ACM ( g-g)

a: Xét ΔHBA vuông tại H và ΔIDC vuông tại I có

BA=DC

góc HAB=góc ICD

=>ΔHBA=ΔIDC

=>AH=IC

b: Xét tứ giác BHDI có

BH//DI

BH=DI

=>BHDI là hình bình hành

c; S CAB=AB*CM/2

S DAC=1/2*CN*AD

mà ΔCAB=ΔDAC

nên AB*CM=CN*AD

Xét ΔAHB vuông tại H và ΔAMC vuông tại M có

góc HAB chung

=>ΔAHB đồng dạng với ΔAMC

=>AH/AM=AB/AC

=>AB*AM=AH*AC

Xét ΔHCB vuông tại H và ΔNAC vuông tại N có

góc HCB=góc NAC

=>ΔHCB đồng dạng với ΔNAC

=>CB/AC=HC/NA

=>CB*NA=HC*AC=AD*AN

=>AD*AN+AB*AM=AC^2

23 tháng 3 2017

k giúp mk rồi mk làm cho

2 tháng 4 2017

mk cũng đang mắc câu này,bạn bk chưa trả lời giúp mk đi

26 tháng 3 2019

a. hai tg ABG và tg ACE vuông tại G và E có góc GAB chung nên đồng dạng(gg) 
b. Vì tg AEC và ABG đồng dạng --> AB/AC = AG/AE -> AB.AE = AC.AG(1) 
Vì hai tg vuông AFC và CGB có góc CAF = góc BCG (slt) --> tg AFC và tg CGB đồng dạng --> AF/CG = AC/BC --> AF.BC = AC.CG thay BC = AD --> AF.AD = AC.CG (2). 
Cộng (1) và (2) vế theo vế --> AB.AE + AD.AF = AC.AG + AC.CG = AC(AG+GC) = AC.AC = AC^2 
Vậy AB.AE + AD.AF = AC^2.

27 tháng 6 2018

A B C D H K I M N J P 1 2

a) Ta có: Tứ giác ABCD là hình bình hành => ^ABC = ^ADC => 1800 - ^ABC = 1800 -^ADC

=> ^CBH = ^CDK. 

Xét \(\Delta\)CHB và \(\Delta\)CKD: ^CHB=^CKD (=900); ^CBH=^CDK => \(\Delta\)CHB ~ \(\Delta\)CKD (g.g)

=> \(\frac{CH}{CK}=\frac{CB}{CD}\Rightarrow\frac{CH}{CB}=\frac{CK}{CD}\)(đpcm).

b) Ta có: \(\frac{CH}{CB}=\frac{CK}{CD}\)(câu a) nên \(\frac{CH}{CB}=\frac{CK}{AB}\)(Do CD=AB) hay \(\frac{CB}{CH}=\frac{AB}{CK}\)

Thấy: ^ABC là góc ngoài \(\Delta\)CHB => ^ABC = ^CHB + ^HCB = 900 + ^HCB (1)

BC // AD; CK vuông góc AD tại K => CK vuông góc BC (Quan hệ song song vuông góc)

=> ^BCK=900 => ^KCH = ^HCB + ^BCK = ^HCB + 900 (2)

Từ (1) và (2) => ^ABC = ^KCH

Xét \(\Delta\)ABC và \(\Delta\)KCH: ^ABC = ^KCH; \(\frac{CB}{CH}=\frac{AB}{CK}\)=> \(\Delta\)ABC ~ \(\Delta\)KCH (c.g.c) (đpcm).

c) Gọi P là hình chiếu vuông góc của D lên đường chéo AC.

Xét \(\Delta\)APD và \(\Delta\)AKC: ^APD = ^AKC (=900); ^A1 chung => \(\Delta\)APD ~ \(\Delta\)AKC (g.g)

=> \(\frac{AP}{AK}=\frac{AD}{AC}\Rightarrow AD.AK=AP.AC\)(3)

Xét \(\Delta\)DPC và \(\Delta\)CHA: ^DPC = ^CHA (=900); ^DCP=^A2 (Do AB//CD)

=> \(\Delta\)DPC ~ \(\Delta\)CHA (g.g) => \(\frac{CD}{AC}=\frac{CP}{AH}\Rightarrow CD.AH=CP.AC\)

Mà CD=AB nên \(AB.AH=CP.AC\)(4)

Cộng (3) với (4) theo vế: \(AB.AH+AD.AK=CP.AC+AP.AC=AC.\left(CP+AP\right)\)

\(\Rightarrow AB.AH+AD.AK=AC.AC=AC^2\)(đpcm).

d) Áp dụng hệ quả ĐL Thales ta được: \(\frac{ID}{IM}=\frac{IC}{IA}\)(AM//CD)

Lại có: \(\frac{IC}{IA}=\frac{IN}{ID}\)(CN//AD). Suy ra: \(\frac{ID}{IM}=\frac{IN}{ID}\Rightarrow IM.IN=ID^2\)(đpcm).

e) Ta có: \(\frac{ID}{IM}=\frac{IN}{ID}\)(cmt). Mà ID=IJ.

=> \(\frac{IJ}{IM}=\frac{IN}{IJ}\Rightarrow\frac{IM}{IJ}=\frac{IJ}{IN}=\frac{IM-IJ}{IJ-IN}=\frac{JM}{JN}\)(T/c dãy tỉ số bằng nhau)

\(\Rightarrow\frac{ID}{IN}=\frac{JM}{JN}\). Lại có: \(\frac{ID}{IN}=\frac{AD}{CN}=\frac{BC}{CN}=\frac{DM}{DN}\)(Hệ quả ĐL Thales)

Từ đó suy ra: \(\frac{JM}{JN}=\frac{DM}{DN}\)(đpcm).