Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ta có: ABCD là hình bình hành => AB // CD và AB = CD
mà E là trung điểm của AB ; F là trung điểm của CD
AE = EB = CF = DF (1)
vì AB // CD => EB // DF (2)
từ (1) và (2) => tứ giác DEBF là hình bình hành (đccm)
b) hình bình hành ABCD có:
AC cắt BD tại trung điểm của mỗi đường (1)
xét hình bình hành DEBF có EF cắt BD tại trung điểm mỗi đường (2)
từ (1) và (2) => AC ; BD ; EF đồng quy
c) gọi O là giao điểm của AC ; BD ; EF
xét \(\Delta EOM\) và \(\Delta NOF\) có:
góc EOM = góc NOF (đối đỉnh)
OE = OF
góc MEF = góc NFE (CE // BF)
=> tam giác EOM = tam giác NOF (g.c.g)
=> ME = NF
ta có: ME // NF
=> tứ giác EMFN là hbh (đccm)
chúc bạn học tốt!! ^^
564576767568768769535737476575678567856856876876697634524545346456457645765756567563
ABCD là HBH => AB = CD
tg BEFD có : BE = DF ( cùng = 1/2 hai cạnh Ab và CD )
BE // DF ( AB // CD)
=> BEFD là HBH
b, TG AEFD có AE = DF ( cùng bằng 1/2 hai cạnh bằng nhau )
AE // BF ( AB // CD)
=> EFD là HBH
A) Xét tam giác DMB và tam giác MAN có : MA=MB ; góc MBD = góc MAN ( vì hai góc sole trong) ; góc AMN=góc BMD ( vì hai góc đối đỉnh) vậy tam giác DMB = tam giác MAN ( G-C-G) suy ra : MN=MD mà ta lại có MNsong song với BC và bằng 1/2 BC vậy suy ra : MN+MD=BC mà ta lại có MN song song với BC suy ra DN cũng song song với BC vậy Tứ giác BDNC là hình bình hành
B) Tứ giác BDNH là hình thang cân Do: DN song song với BH vậy tứ giác DNHB là (hình thang)* mà ta lại có : AN = DB ; AN=NH ( vì đường trung tuyến ứng với cạnh huyền) vậy DH = NH** từ (*) và (**) suy ra : tứ giác BDNH là hình thang cân
a) DEBF là hình bình hành vì EB=DF và // với nhau
b) do 2 tam giác CAB và ACD bằng nhau
có AC (chung) . 2 đường chéo AC và BD nên O là trung điểm của AC
E, F là trung đểm của AB và CD nên 3 điểm FOF thẳng hàng
ta lại có OE và OF là đường trubg bình của 2 tam giác bằng nhau như ở trên
=> OE=OF => đối xứng qua O
c) do DEvaf BF // nên EM // FN
ta lại có 2 tam giác AME= FNC vì các góc A=C; E=F (do các cặp góc so le bằng nhau)
=> EM=FN => EM // FN
vaayjEMFN là hình bình hành