K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2015

A B C K D H F E

a, BE, DF cùng vuông góc vs AC nên BE//DF 
tam giác BEO = tam giác DFO ( cạnh huyền - góc nhọn) (O là gđ 2 đường chéo) 
=> BE = FD 
từ đó đc tg BEDF là hình bình hành 

b, tam giác BHC đồng dạng vs tam giác DKC (g.g) 
có góc H = góc k =90 độ 
và góc CBH = góc CDK ( vì 2 góc này kề bù vs 2 góc bằng nhau là góc CBA =góc ADC) 
=> BC/DC = HC/KC 
=>CB.CK = CH.CD 

c, tam giác ABE đồng dạng vs tam giác ACH (g.g) 
vì có góc E = góc H = 90 độ 
và góc A chung 
=> AB/AC = AE/AH 
=> AB. AH = AC.AE 

Tương tự ta đc tam giác ADF đồng dạng vs tam giác ACK 
=> AD/AC = AF/AK 
=> AD. AK = AC.AF 

Vậy AB.AH + AD.AK = AC.AE + AC.AF = AC. (AE +AF) = AC .( AE +CE) = AC^2 
tự chứng minh AF = CE theo tam giác vuông BEC = tam giác vuông DFA ( cạnh huyền - cạnh góc vuông) 

23 tháng 3 2016

bạn ơi tại sao AB.AH+AD.AK=AC.AE+AC.AF

21 tháng 4 2018

Tương tự HS tự làm

26 tháng 10 2021

b: Xét ΔAHB vuông tại H có HD là đường cao

nên \(AD\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HE là đường cao

nên \(AE\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)

hay \(\dfrac{AD}{AC}=\dfrac{AE}{AB}\)

Xét ΔADE vuông tại A và ΔACB vuông tại A có 

\(\dfrac{AD}{AC}=\dfrac{AE}{AB}\)

Do đó: ΔADE\(\sim\)ΔACB