Bài 1: Cho △ ABC vuông ở A (AB<AC). Kẻ đường cao AH. Gọi E, N, M theo thứ tự là trung điểm của AB, AC và BCa) Chứng minh : Tứ giác EHMN là hình thang cânb) Chứng minh: HE ⊥ HNc) Từ A kẻ đường thẳng song song với BC cắt tia ME, MN theo thứ tự ở K và F. Chứng minh: Tứ giác AMBK là hình thoid) Chứng minh: AM, EN,BF và KC đồng quyBài 2: Cho hình bình hành ABCD tâm O. Trên đoạn OD lấy điểm E.Kẻ CF // AE (F ϵ...
Đọc tiếp
Bài 1: Cho △ ABC vuông ở A (AB<AC). Kẻ đường cao AH. Gọi E, N, M theo thứ tự là trung điểm của AB, AC và BC
a) Chứng minh : Tứ giác EHMN là hình thang cân
b) Chứng minh: HE ⊥ HN
c) Từ A kẻ đường thẳng song song với BC cắt tia ME, MN theo thứ tự ở K và F. Chứng minh: Tứ giác AMBK là hình thoi
d) Chứng minh: AM, EN,BF và KC đồng quy
Bài 2: Cho hình bình hành ABCD tâm O. Trên đoạn OD lấy điểm E.Kẻ CF // AE (F ϵ BD)
a) Chứng minh: Tứ giác AFCE là hình bình hành
b) Cho AF cắt BC tại M, CE cắt AD tại N. Chứng minh: M,O,N thẳng hàng
c) Lấy K đối xứng C qua E. Xác định vị trí của E trên OD để tứ giác AKDO là hình bình hành
d) Lấy I đối xứng với A qua D, lấy H đối xứng A qua B. Hình Bình hành ABCD phải có thêm điều kiện gì để I và H đối xứng với nhau qua đường thẳng AC?
Giúp mình với mình đang cần gấp! Cảm ơn mọi người nha!
A B C D O E F K M N
sửa đề : CE cắt AD tại N
a, E; F là trung điểm của OD;OB (gt) => OE = 1/2OD và OF = 1/2OB
mà OD = OB do O là trung điểm của BD
=> OE = OF
=> O là trung điểm của EF ; lại có O là trung điểm của AC
=> AECF là hình bình hành
b, xét tg DEK và tg BEA có : AB // DK
=> DK/AB = DE/EB = 1/3
=> 3DK = AB = DC
=> 2DK = KC
c, tương tự câu b chứng minh được MB = DN = 1/3AD
mà MB + CM = CB và DN + AN = AD
=> AN = CM mà AN // CM
=> ANCM là hình bình hành
=> CA cắt NM tại trung điểm của mỗi đường
có O là trung điểm của AC
=> O là trung điểm của MN
=> M và N đối xứng với nhau qua O