Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét \(\Delta OAB\)và \(\Delta OCD\)có:
\(\widehat{AOB}=\widehat{COD}\) (đối đỉnh)
\(\widehat{OAB}=\widehat{OCD}\) (slt do AB // CD)
suy ra: \(\Delta OAB~\Delta OCD\) (g.g)
b) \(\Delta OAB~\Delta OCD\) (câu a)
\(\Rightarrow\)\(\frac{OA}{OC}=\frac{OB}{OD}\)
\(\Rightarrow\)\(OC=\frac{OA.OD}{OB}=\frac{8}{3}\)cm
c) \(\Delta OAB~\Delta OCD\) (câu a)
\(\Rightarrow\)\(\frac{S_{OAB}}{S_{OCD}}=\left(\frac{AB}{CD}\right)^2=\frac{1}{4}\)
a) ta có: ABCD là hình bình hành => AB // CD và AB = CD
mà E là trung điểm của AB ; F là trung điểm của CD
AE = EB = CF = DF (1)
vì AB // CD => EB // DF (2)
từ (1) và (2) => tứ giác DEBF là hình bình hành (đccm)
b) hình bình hành ABCD có:
AC cắt BD tại trung điểm của mỗi đường (1)
xét hình bình hành DEBF có EF cắt BD tại trung điểm mỗi đường (2)
từ (1) và (2) => AC ; BD ; EF đồng quy
c) gọi O là giao điểm của AC ; BD ; EF
xét \(\Delta EOM\) và \(\Delta NOF\) có:
góc EOM = góc NOF (đối đỉnh)
OE = OF
góc MEF = góc NFE (CE // BF)
=> tam giác EOM = tam giác NOF (g.c.g)
=> ME = NF
ta có: ME // NF
=> tứ giác EMFN là hbh (đccm)
chúc bạn học tốt!! ^^
564576767568768769535737476575678567856856876876697634524545346456457645765756567563
Tam giác AOB ~ tam giác COD
=> [TEX]\frac{OA}{OC}[/TEX] = [TEX]\frac{OB}{OD}[/TEX] =[TEX]\frac{AB}{CD}[/TEX]
=> [TEX]\frac{OA +OB}{OC +OD}[/TEX] = [TEX]\frac{AB}{CD}[/TEX] (1)
Tương tự ta cũng có tam giác IAB ~ tam giác IDC
=> [TEX]\frac{IA +IB}{ID + IC}[/TEX] = [TEX]\frac{AB}{CD}[/TEX] (2)
Từ (1)và (2) => đpcm
Câub:
DỄ C/M tam giác MBO ~ tam giác NDO ( MB/DN = OB/OD ; Góc MBO = góc ODN)
=> góc MOB = góc DON
=> M ; O ; N thẳng hàng (3)
Dễ c/m I ; M ; N thẳng hàng ( cái này cực dễ ) (4)
=> Từ (3)và (4) => đpcm