Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
theo ta-let ta có:
AI trên DK = IB trên KC (=MI trên MK)
AI trên KC = IB trên DK (=IN trên NK)
nhân thẳng hàng dược
AI^ 2 trên DK. KC = IB^2 trên DK .KC
suy ra AI= IB
mà AI trên DK = IB trên KC nên DK= kC
DPCM
theo ta-let ta có:
AI trên DK = IB trên KC (=MI trên MK)
AI trên KC = IB trên DK (=IN trên NK)
nhân thẳng hàng dược
AI^ 2 trên DK. KC = IB^2 trên DK .KC
suy ra AI= IB
mà AI trên DK = IB trên KC nên DK= kC
DPCM
Đây : https://hoc24.vn/hoi-dap/tim-kiem?q=Cho+h%C3%ACnh+thang+ABCD(AB+song+song+CD).G%E1%BB%8Di+M+l%C3%A0+trung+%C4%91i%E1%BB%83m+DC,E+l%C3%A0+giao+%C4%91i%E1%BB%83m+c%E1%BB%A7a+AM+v%C3%A0+BD;F+l%C3%A0+giao+%C4%91i%E1%BB%83m+c%E1%BB%A7a+BM+v%C3%A0+AC.++a)CMR:EF+song+song+AB.++b)T%C3%ADnh+EF,bi%E1%BA%BFt+AB=15cm;CD=24cm.++c)EF+c%E1%BA%AFt+AD,BC+l%E1%BA%A7n+l%C6%B0%E1%BB%A3t+t%E1%BA%A1i+I,K.CMR:IE=IF=FK.&id=647297
Câu trả lời của Nguyễn Thanh Thủy nha!!!
G A B M O N N' C D E F
Gọi \(N\) là trung điểm của đoạn thắng \(AB\) \(;\) \(N'\) là giao điểm của \(GM\) và \(AB\)
Tứ giác \(ABCD\) là hình thang nên \(AB\text{//}CD\)
Khi đó,
\(\Delta GMD\) có \(AN'\text{//}MD\), nên \(\frac{AN'}{MD}=\frac{GN'}{GM}\) (hệ quả của định lý Ta-lét) \(\left(3\right)\)
\(\Delta GMC\) có \(N'B\text{//}MC\), nên \(\frac{N'B}{MC}=\frac{GN'}{GM}\) \(\left(4\right)\)
\(\left(3\right);\) \(\left(4\right)\) \(\Rightarrow\) \(\frac{AN'}{MD}=\frac{N'B}{MC}\) \(\left(=\frac{GN'}{GM}\right)\)
Mà \(MD=MC\) \(\left(gt\right)\), do đó, \(AN'=N'B\) hay \(N'\) phải trùng với \(N\)
Tức là ba điểm \(G,\) \(N,\) \(M\) thẳng hàng \(\left(\text{*}\right)\)
Tương tự, ta cũng chứng minh được ba điểm \(N,\) \(O,\) \(M\) thẳng hàng \(\left(\text{**}\right)\)
Từ \(\left(\text{*}\right)\) và \(\left(\text{**}\right)\) suy ra bốn điểm \(G,\) \(N,\) \(O,\) \(M\) thẳng hàng
Vậy, đoạn thẳng \(GO\) sẽ lần lượt đi qua \(N\) và \(M\) hay đi qua trung điểm của \(AB\) và \(CD\)
Đặt AB = m, MC = MD = n.
a) Do AB // CD, ta có :
\(\frac{MI}{TA}=\frac{MD}{AB}=\frac{n}{m}\)
\(\frac{MK}{KB}=\frac{MC}{AB}=\frac{n}{m}\)
Từ (1) và (2) suy ra \(\frac{MI}{IA}=\frac{MK}{KB}\) Từ đó theo định lí đảo của định lí Ta - lét đối với tam giác MAB, ta có IK // AB. ( nhưng lớp 8 chưa học ta -lét thì fai )
hinh thang chu