K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2016

có: góc DAB = góc BCD

=> góc MAN = góc MCN   => NC // AM  (1) 

Mà ABCD là hình bình hành  => AB // CD  => AN // MC  (2)

từ (1) , (2)  => ANCM là hình bình hành (có các cạnh đối //)

=> AM = NC, AN = MC (dpcm)

29 tháng 7 2016

các bn jup mk nha mk tối nộp rùi

29 tháng 10 2018

Bạn tự vẽ hình nha

a) Do ABCD là hình bình hành ⇒ Góc A = góc C

\(\dfrac{1}{2}\)góc A = \(\dfrac{1}{2}\)góc C ⇒ Góc DAM = Góc BCN

Xét tam giác ADM và tam giác CBN có:

AD = BC ( ABCD là hình bình hành)

Góc DAM = góc CBN ( Chứng minh trên )

Góc ADB = góc ABC ( ABCD là hình bình hành )

⇒ Tam giác ADM = tam giác CBN (g.c.g)

⇒ BN = DM ( 2 cạnh tương ứng )

Vì ABCD là hình bình hành ⇒ AB = CD

⇒ BN + AN = CM + DM.

Mà BN = DM ⇒ AN = MC. Do AN song song với MC ( vì AB song song với CD)

ANCM là hình bình hành.

b) Xét tứ giác BMDN có BN = DM ; BN song song với DM ( do AB song song với CD)

⇒ BMDN là hình bình hành ⇒ BM = DN

15 tháng 7 2016

 Xét tam giác ADM và CBN có:

        ^D=^B(gt)

        AD=BC(gt)

        ^DAM=^BCN (vì ^A=^C mà AM,CN lần lượt là tia pg của ^A,^C)

=> tam giác ADM=CBN(g.c.g)

=>AM=NC(2 cạnh tương ứng)

    DM=BN(2 cạnh tương ứng)

Có:  AB=AN+BN

       DC=DM+MC

Mà AB=DC(gt); DM=BN(cmt)

=>AN=Mc

16 tháng 8 2017

A B c D M N P Q

a)gọi gđ của AM và DC là P. gđ của BN và DC là Q

ta có: ^BAD+^ADC=180( và AB//DC)

=>1/2. ^BAD  +1/2.^ADC =90

=> ^MAD+^MDA = 90 ( vì AM và DM lần lượt là pg của ^A và ^D)

=> DM \(⊥\)AP

c/ tương tự ta đc: CN \(⊥\)BQ

xét tg ADP có: DM lad pg của ^D (gt) và DM\(⊥\) AP (cmt)  => tg ADP cân tại D => DM cx là dg trung tuyến ứng vs AP

=> M là t/đ của AP

c/m tương tự ta đc: tg BQC cân tại C => N là t/đ của BQ

xét hthang ABQP ( vì AB// DC mà P;Q thuộc DC)  có:

M là t/đ của AP (cmt) và N là t/đ của BQ (cmt)

=> MN là đg trung bình của hthang ABQP => MN//AB (đpcm)

b) do tg ADP cân tại D (câu a) => AD=PD =d

do tg BQC cân tại C(câu a) => BC=QC=b

 ta có MN là đg trung bình của hthang ABQP (câu a) => MN=\(\frac{1}{2}.\left(AB+PQ\right)\)

         =>MN=\(\frac{1}{2}.\left(AB+PC+CQ\right)\)

   =>MN=\(\frac{1}{2}.\left(AB+DC-PD+QC\right)\)

   =>MN=\(\frac{1}{2}.\left(AB+DC-AD+BC\right)\)  (vì PD=AD và QC=BC)

  =>MN=\(\frac{1}{2}.\left(a+c-d+b\right)\)

1 tháng 10 2019

ABCD là hình bình hành 

=> AD = BC (tc)

     góc ADC = góc CBA (tc)     (1)

     góc DAB = góc BCD (tc)       (2)

AM; CN là phân giác của góc DAB; góc BCD (Gt)

=> DAM = 1/2. góc DAB và BCN = 1/2. góc BCD (tc)

=> góc DAM = góc BCN   ; (1)(2)

=> tam giác ADM = tam giác CBN (g-c-g)

=> AM = NC (đn)

có AN // MC do ABCD là hình bình hành (gt)

=> ANCM là hình bình hành (dh)

23 tháng 6 2016

XÉt tam giác BOC có :

N LÀ trung điểm của BC và JN // vs AB nên J là tđ của BO( đặt tia pz là BO nha bạn)

Suy ra JN là đtb cửa tam giác BOC

tương tự ta cũng có MI là đường tb của tam giác AKD (ak là pz)

 MN là đtb của hình thang ABCD NÊN MN// DC

THEO TIÊN ĐỀ Ơ-CLIT THÌ QUA ĐIỂM I NGOÀI ĐƯỜNG THẲNG DC CHỈ KẺ ĐC DUY NHẤT 1 ĐT // VS DC

nên M,N,I,J thẳng hàng

mình giải vậy rồi thì k giùm đi