K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 1 : Một hình nón có bán kính đáy r = 2a và chiều cao h = \(a\sqrt{5}\) . Tính diện tích xung quanh của hình nón đó A. \(12\Pi a^2\) B. \(6\Pi a^2\) C. \(12\Pi a^2\) D. \(\frac{4\Pi}{3}a^3\sqrt{5}\) Câu 2 : Khối nón có độ dài đường sinh l = \(a\sqrt{6}\) và đường cao bằng bán kính đáy . Tính thể tích khối nón đã cho A. \(a^3\sqrt{3}\) B. \(3a^3\sqrt{3}\) C. \(a^3\sqrt{6}\)...
Đọc tiếp

Câu 1 : Một hình nón có bán kính đáy r = 2a và chiều cao h = \(a\sqrt{5}\) . Tính diện tích xung quanh của hình nón đó

A. \(12\Pi a^2\) B. \(6\Pi a^2\) C. \(12\Pi a^2\) D. \(\frac{4\Pi}{3}a^3\sqrt{5}\)

Câu 2 : Khối nón có độ dài đường sinh l = \(a\sqrt{6}\) và đường cao bằng bán kính đáy . Tính thể tích khối nón đã cho

A. \(a^3\sqrt{3}\) B. \(3a^3\sqrt{3}\) C. \(a^3\sqrt{6}\) D. \(3a^3\sqrt{2}\)

Câu 3 : Một hình nón có độ dài đường sinh bằng đường kính đáy . Tính tỉ số \(\frac{S_{xq}}{S_{tp}}\)

A. \(\frac{1}{6}\) B. \(\frac{1}{3}\) C. \(\frac{2}{3}\) D. \(\frac{2}{5}\)

Câu 4 : Thiết diện qua đỉnh của hình nón là tam giác vuông cân có diện tích bằng \(3a^2\) và chiều cao của hình nón bằng \(a\sqrt{2}\) . Tính bán kính đáy của hình tròn

A. \(a\sqrt{6}\) B. 4a C. 3a D. 2a

Câu 5 : Cắt một hình trụ không nắp theo một đường sinh và " trải " lên mặt phẳng ta được một hình chữ nhật có diện tích bằng \(4\Pi a^2\) . Biết độ dài đường sinh bằng 2a , tính thể tích khối trụ đã cho

A. \(4\Pi a^3\) B. \(2\Pi a^3\) C. \(\Pi a^3\) D. \(\frac{2}{3}\Pi a^3\)

0
Câu 1: Gọi S là diện tích hình phẳng bị giới hạn bởi \(y=ax^3+bx^2+cx+d\) với trục hoành và \(x=a+b,x=c+d\), sao cho S gấp hai lần diện tích tam giác vuông \(HOK\) (O là gốc toạ độ ) với \(H,K\) lần lượt là giao điểm của đường thẳng \(y=\left(a+c\right)x+\frac{b}{d}\) với trục tung và trục hoành. Tìm mối liên hệ của \(a,b,c,d\) . Câu 2: Cho hình chóp \(S.ABCD\) có mặt đáy là hình vuông cạnh \(2a\)....
Đọc tiếp

Câu 1: Gọi S là diện tích hình phẳng bị giới hạn bởi \(y=ax^3+bx^2+cx+d\) với trục hoành và \(x=a+b,x=c+d\), sao cho S gấp hai lần diện tích tam giác vuông \(HOK\) (O là gốc toạ độ ) với \(H,K\) lần lượt là giao điểm của đường thẳng \(y=\left(a+c\right)x+\frac{b}{d}\) với trục tung và trục hoành. Tìm mối liên hệ của \(a,b,c,d\) .
Câu 2: Cho hình chóp \(S.ABCD\) có mặt đáy là hình vuông cạnh \(2a\). \(SA\perp\left(ABCD\right)\)\(SA=a\). Gọi \(M,N\) lần lượt là trung điểm của cạnh \(SB,SC\). Điểm E nằm trên cạnh \(SA\) sao cho \(SE=2EA\). Gọi điểm \(P\) là điểm di động trên cạnh \(SB\). Giả sử \(d\) là độ dài đoạn \(AP\) mà tại vị trị điểm \(P\) thì \(V_{S.MNEP}\) đạt giá trị nhỏ nhất và giả sử \(d_1\) là độ dài đoạn \(AP\) mà tại vị trí điểm \(P\) thì \(V_{S.MNP}\) đạt giá trị lớn nhất. Tính \(d+d_1\) bằng

a) 3a

b) \(\sqrt{3}a\)

c) 4a

d) Kết quả khác

0
Câu 1 : Một hình trụ có độ dài đường sinh bằng hai lần bán kính và diện tích toàn phần bằng \(\frac{3}{2}\Pi a^2\) . Tính bán kính đáy A. \(\frac{a}{2}\) B. a C. 2a D. \(\frac{a}{4}\) Câu 2 : Một hình nón có bán kính đáy bằng 4 và góc ở đỉnh bằng 600 . Diện tích xung quanh của hình nón đã cho bằng A. \(\frac{64\sqrt{3}\Pi}{3}\) B. \(\frac{32\sqrt{3}\Pi}{3}\) ...
Đọc tiếp

Câu 1 : Một hình trụ có độ dài đường sinh bằng hai lần bán kính và diện tích toàn phần bằng \(\frac{3}{2}\Pi a^2\) . Tính bán kính đáy

A. \(\frac{a}{2}\) B. a C. 2a D. \(\frac{a}{4}\)

Câu 2 : Một hình nón có bán kính đáy bằng 4 và góc ở đỉnh bằng 600 . Diện tích xung quanh của hình nón đã cho bằng

A. \(\frac{64\sqrt{3}\Pi}{3}\) B. \(\frac{32\sqrt{3}\Pi}{3}\) C. \(64\Pi\) D. \(32\Pi\)

Câu 3 : Cắt một hình trụ theo một mặt phẳng song song với trục và cách trục của hình trụ một khoảng bằng 2a , ta được thiết diện là một hình vuông cạnh a . Tính thể tích khối trụ đã cho .

A. \(2\Pi a^3\) B. \(\Pi a^3\) C. \(\Pi a^3\sqrt{3}\) D. \(4\Pi a^3\)

Câu 4 : Một hình nón đỉnh S , đáy là đường tròn tâm O và góc ở đỉnh bằng 1200 . Một mặt phẳng đi qua đỉnh S và cắt hình nón theo một thiết diện là tam giác vuông cân SAB . Biết khoảng cách giữa hai đường thẳng AB và SO bằng 3 . Tính diện tích xung quanh của hình nón

A. \(36\Pi\sqrt{3}\) B. \(27\sqrt{3}\Pi\) C. \(18\sqrt{3}\Pi\) D. \(9\sqrt{3}\Pi\)

Câu 5 : Hình nón đỉnh I và đường tròn tâm O . Bán kính đáy bằng chiều cao của hình nón và bằng a . Hai điểm A , B nằm trên đường tròn đáy sao cho \(AB=\frac{a}{2}\) . Tính thể tích tứ diện IABO

A. \(\frac{a^3\sqrt{5}}{4}\) B. \(\frac{a^3\sqrt{5}}{48}\) C. \(\frac{a^3\sqrt{15}}{16}\) D. \(\frac{a^3\sqrt{15}}{12}\)

0
NV
22 tháng 3 2019

\(V_1=\pi\int\limits^9_0xdx=\frac{81\pi}{2}\)

Gọi \(M\left(a;\sqrt{a}\right)\) (\(0\le a\le9\)) và \(N\left(a;0\right)\) là hình chiếu của M trên Ox

Khi quay AOM quanh Ox sẽ tạo thành hai hình nón chung đáy với bán kính đáy \(r=MN=y_M=\sqrt{a}\); chiều cao lần lượt là \(ON=x_N=a\)\(OM=x_M-x_N=9-a\)

\(\Rightarrow V_2=\frac{1}{3}\pi\left(\sqrt{a}\right)^2\left(a+9-a\right)=3\pi a\)

\(\Rightarrow\frac{81\pi}{2}=6\pi a\Rightarrow a=\frac{27}{4}\) \(\Rightarrow M\left(\frac{27}{4};\frac{3\sqrt{3}}{2}\right)\)

\(\Rightarrow\) diện tích phần giới hạn:

\(S=\int\limits^{\frac{27}{4}}_0\sqrt{x}dx-\frac{1}{2}.\frac{27}{4}.\frac{3\sqrt{3}}{2}=\frac{27\sqrt{3}}{4}-\frac{81\sqrt{3}}{16}=\frac{27\sqrt{3}}{16}\)

Câu 1 : Cho hình chóp có các cạnh bên bằng nhau và bằng a , độ dài đường cao bằng h . Tính bán kính mặt cầu ngoại tiếp hình chóp đã cho . A. R = \(\frac{a^2}{2h}\) B. R = \(\frac{2a^2}{h}\) C. R = \(\frac{2h^2}{a}\) D. R = \(\frac{h^2}{2a}\) Câu 2 : Cho hình chóp S.ABCD có cạnh đáy a , cạnh bên bằng \(\frac{a\sqrt{3}}{2}\) . Tính bán kính mặt cầu ngoại tiếp hình chóp S.ABCD A....
Đọc tiếp

Câu 1 : Cho hình chóp có các cạnh bên bằng nhau và bằng a , độ dài đường cao bằng h . Tính bán kính mặt cầu ngoại tiếp hình chóp đã cho .

A. R = \(\frac{a^2}{2h}\) B. R = \(\frac{2a^2}{h}\) C. R = \(\frac{2h^2}{a}\) D. R = \(\frac{h^2}{2a}\)

Câu 2 : Cho hình chóp S.ABCD có cạnh đáy a , cạnh bên bằng \(\frac{a\sqrt{3}}{2}\) . Tính bán kính mặt cầu ngoại tiếp hình chóp S.ABCD

A. \(\frac{3a}{2}\) B. \(\frac{a}{2}\) C. a D. \(\frac{3a}{4}\)

Câu 3 : Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A, AB = \(a\sqrt{2}\) , SA = SB = SC . Góc giữa SA và (ABC) bằng 600 . Tính diện tích mặt cầu ngoại tiếp S.ABC

A. \(\frac{16\Pi a^2}{9}\) B. \(\frac{16\Pi a^2}{3}\) C. \(4\Pi a^2\) D. \(\frac{64\Pi a^2}{3}\)

Câu 4 : Cho mặt cầu (S) có bán kính R = \(\sqrt{3}\) . Xét các điểm A ,B , C , D nằm trên mặt cầu (S) sao cho AB , AC , AD đôi một vuông góc với nhau . Thể tích khối tứ diện ABCD có giá trị lớn nhất bằng

A. \(\frac{8}{3}\) B. 8 C. 4 D. \(\frac{4}{3}\)

help me !!!!!!

3
NV
30 tháng 8 2020

4.

Gọi M là trung điểm CD, qua M kẻ đường thẳng song song AB

Gọi N là trung điểm AB, qua N kẻ đường thẳng song song AM

Gọi giao của 2 đường thẳng trên là O \(\Rightarrow\) O là tâm (S)

\(\Rightarrow AO=R=\sqrt{3}\)

Đặt \(AB=x;AC=y;AD=z\)

\(AN=\frac{AB}{2}=\frac{x}{2}\) ; \(AM=\frac{CD}{2}=\frac{1}{2}\sqrt{AC^2+AD^2}=\frac{1}{2}\sqrt{y^2+z^2}\)

Áp dụng Pitago: \(AO^2=AN^2+AM^2\)

\(\Rightarrow\frac{x^2}{4}+\frac{1}{4}\left(y^2+z^2\right)=3\Rightarrow x^2+y^2+z^2=12\)

\(V=\frac{1}{3}xyz\le\frac{1}{3}\left(\frac{x+y+z}{3}\right)^3\le\frac{1}{3}\left(\frac{\sqrt{3\left(x^2+y^2+z^2\right)}}{3}\right)^3=\frac{8}{3}\)

NV
30 tháng 8 2020

2.

Gọi O là tâm đáy \(\Rightarrow SO\perp\left(ABCD\right)\)

\(AC=a\sqrt{2}\Rightarrow AO=\frac{1}{2}AC=\frac{a\sqrt{2}}{2}\)

\(SO=\sqrt{SA^2-OA^2}=\frac{a}{2}\)

Áp dụng công thức từ câu 1:

\(R=\frac{SA^2}{2SO}=\frac{3a}{4}\)

3.

\(BC=AB\sqrt{2}=2a\)

Gọi H là hình chiếu của S lên (ABC) \(\Rightarrow\) H đồng thời là tâm đường tròn ngoại tiếp đáy

\(\Rightarrow\) H là trung điểm BC

\(\Rightarrow\widehat{SAH}=60^0\Rightarrow SH=AH.tan60^0=\frac{BC}{2}tan60^0=a\sqrt{3}\)

\(SA=\frac{AH}{cos60^0}=2a\)

\(\Rightarrow R=\frac{SA^2}{2SH}=\frac{2\sqrt{3}a}{3}\)

\(S=4\pi R^2=\frac{16\pi a^2}{3}\)

Câu 1 : Mặt cầu (S) có bán kính R = \(a\sqrt{2}\) . Tính diện tích của mặt cầu (S) A. \(8a^2\) B. \(4\Pi a^2\) C. \(8\Pi a^2\) D. \(16\Pi a^2\) Câu 2 : Công thức tính thể tích khối cầu có bán kính R ? A. \(\frac{4}{3}\Pi R^2\) B. \(\frac{4}{3}\Pi R^3\) C. \(\frac{1}{3}\Pi R^3\) D. \(\Pi R^3\) Câu 3 : Một hình hộp chữ nhật có ba kích thước...
Đọc tiếp

Câu 1 : Mặt cầu (S) có bán kính R = \(a\sqrt{2}\) . Tính diện tích của mặt cầu (S)

A. \(8a^2\) B. \(4\Pi a^2\) C. \(8\Pi a^2\) D. \(16\Pi a^2\)

Câu 2 : Công thức tính thể tích khối cầu có bán kính R ?

A. \(\frac{4}{3}\Pi R^2\) B. \(\frac{4}{3}\Pi R^3\) C. \(\frac{1}{3}\Pi R^3\) D. \(\Pi R^3\)

Câu 3 : Một hình hộp chữ nhật có ba kích thước tương ứng là a , 2a , 2a . Tính thể tích khối cầu ngoại tiếp hình hộp

A. \(\frac{9\Pi a^3}{5}\) B. \(\frac{9\Pi a^3}{4}\) C. \(9\Pi a^3\) D. \(\frac{9\Pi a^3}{2}\)

Câu 4 : Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB = a , AD = \(a\sqrt{3}\) . Cạnh bên SA vuông góc với đáy và SC tạo với đáy 1 góc 600 . Xác định tâm và bán kính mặt cầu ngoại tiếp hình chóp S.ABCD

A. Tâm là trung điểm SC , R = 2a

B. Tâm là trung điểm SC , R = 4a

C. Tâm trùng với tâm của đáy , R = a

D. Tâm là trung điểm SD , R = \(\frac{a\sqrt{15}}{2}\)

Câu 5 : Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a , cạnh bên SA vuông góc với đáy , cạnh bên SB bằng \(a\sqrt{3}\) . Tính thể tích khối cầu ngoại tiếp S.ABCD

A. \(\frac{4}{3}\Pi a^3\) B. \(\frac{16\sqrt{2}}{3}a^3\) C. \(12\sqrt{3}a^3\) D. \(\frac{4}{3}a^3\)

HELP ME !!!!!!!!!!!!!

4
AH
Akai Haruma
Giáo viên
30 tháng 8 2020

Câu 5:

Tương tự câu 4, ta thấy tâm $I$ của khối cầu ngoại tiếp $S.ABCD$ là trung điểm $SC$

Theo định lý Pitago:

$SA^2=SB^2-AB^2=(a\sqrt{3})^2-a^2=2a^2$

$AC^2=AB^2+BC^2=a^2+a^2=2a^2$

$SC=\sqrt{SA^2+AC^2}=\sqrt{2a^2+2a^2}=2a$

Do đó: $R=SI=IC=\frac{SC}{2}=a$

Thể tích khối cầu ngoại tiếp S.ABCD là:

$V=\frac{4}{3}\pi R^3=\frac{4}{3}\pi a^3$

Đáp án A

 

AH
Akai Haruma
Giáo viên
30 tháng 8 2020

Câu 4:

$AC=\sqrt{AB^2+AD^2}=2a$

$(SC, (ABCD))=\widehat{SCA}=60^0$

$\Rightarrow \frac{SA}{AC}=\tan \widehat{SCA}=\tan 60^0=\sqrt{3}$

$\Rightarrow SA=\sqrt{3}.AC=2\sqrt{3}a$

$SC=\sqrt{SA^2+AC^2}=\sqrt{(2\sqrt{3}a)^2+(2a)^2}=4a$

Gọi $I$ tâm mặt cầu ngoại tiếp hình chóp. $IS=IA=IC$ nên $I$ là tâm ngoại tiếp tam giác $SAC$

$\Rightarrow I$ là trung điểm $SC$.

Bán kính $IS=IC=\frac{AC}{2}=\frac{4a}{2}=2a$

Đáp án A

1) Trong không gian Oxyz, cho các điểm M(2;1;4),N(5;0;0),P(1;-3;1). Gọi I(a,b,c) là tâm của mặt cầu tiếp xúc với mặt phẳng (Oyz) đồng thời đi qua các điểm M,N,P. Tìm c biết a+b+c<5 2) Trong không gian Oxyz, cho đường thẳng d :\(\frac{x+1}{2}\)= \(\frac{y}{1}\)=\(\frac{z-2}{-1}\) và 2 điểm A(-1;3;1), B(0;2;-1). Gọi C(m,n,p) là điểm thuộc d sao cho diện tích tam giác ABC bằng \(2\sqrt{2}\). Giá trị của tổng m+n+p bằng ?? 3) Trong...
Đọc tiếp

1) Trong không gian Oxyz, cho các điểm M(2;1;4),N(5;0;0),P(1;-3;1). Gọi I(a,b,c) là tâm của mặt cầu tiếp xúc với mặt phẳng (Oyz) đồng thời đi qua các điểm M,N,P. Tìm c biết a+b+c<5

2) Trong không gian Oxyz, cho đường thẳng d :\(\frac{x+1}{2}\)= \(\frac{y}{1}\)=\(\frac{z-2}{-1}\) và 2 điểm A(-1;3;1), B(0;2;-1). Gọi C(m,n,p) là điểm thuộc d sao cho diện tích tam giác ABC bằng \(2\sqrt{2}\). Giá trị của tổng m+n+p bằng ??

3) Trong không gian Oxyz, cho ba đường thẳng d :\(\frac{x}{1}\)=\(\frac{y}{1}\)=\(\frac{z+1}{-2}\); \(\Delta_1\): \(\frac{x-3}{2}\)=\(\frac{y}{1}\)=\(\frac{z-1}{1}\)\(\Delta_2\): \(\frac{x-1}{1}\)=\(\frac{y-2}{2}\)=\(\frac{z}{1}\). Đường thẳng \(\Delta\) vuông góc với d đồng thời cắt \(\Delta_1\), \(\Delta_2\) tương ứng tại H, K sao cho độ dài HK nhỏ nhất. Biết rằng \(\Delta\) có một vecto chỉ phương là \(\overrightarrow{u}\)=(h;k;1). Giá trị của h-k bằng

3
NV
6 tháng 5 2019

Câu 1:

\(\overrightarrow{MN}=\left(3;-1;-4\right)\Rightarrow\) pt mặt phẳng trung trực của MN:

\(3\left(x-\frac{7}{2}\right)-\left(y-\frac{1}{2}\right)-4\left(z-2\right)=0\Leftrightarrow3x-y-4z-2=0\)

\(\overrightarrow{PN}=\left(4;3;-1\right)\Rightarrow\) pt mp trung trực PN: \(4x+3y-z-7=0\)

\(\Rightarrow\) Phương trình đường thẳng giao tuyến của 2 mp trên: \(\left\{{}\begin{matrix}x=1+t\\y=1-t\\z=t\end{matrix}\right.\)

\(\Rightarrow I\left(1+c;1-c;c\right)\) \(\Rightarrow\overrightarrow{NI}=\left(c-4;1-c;c\right)\)

\(d\left(I;\left(Oyz\right)\right)=IN\Rightarrow\left|1+c\right|=\sqrt{\left(c-4\right)^2+\left(1-c\right)^2+c^2}\)

\(\Leftrightarrow\left(c+1\right)^2=3c^2-10c+17\)

\(\Leftrightarrow2c^2-12c+16=0\Rightarrow\left[{}\begin{matrix}c=4\\c=2\end{matrix}\right.\)

\(a+b+c< 5\Rightarrow\left(1+c\right)+\left(1-c\right)+c< 5\Rightarrow c< 3\Rightarrow c=2\)

NV
6 tháng 5 2019

Câu 2:

Phương trình tham số d: \(\left\{{}\begin{matrix}x=-1+2t\\y=t\\z=2-t\end{matrix}\right.\) \(\Rightarrow C\left(-1+2n;n;2-n\right)\)

\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AC}=\left(2n;n-3;1-n\right)\\\overrightarrow{AB}=\left(1;-1;-2\right)\end{matrix}\right.\) \(\Rightarrow\left[\overrightarrow{AB};\overrightarrow{AC}\right]=\left(3n-7;-3n-1;3n-3\right)\)

\(\Rightarrow S_{ABC}=\frac{1}{2}\left|\left[\overrightarrow{AB};\overrightarrow{AC}\right]\right|=2\sqrt{2}\)

\(\Leftrightarrow\sqrt{\left(3n-7\right)^2+\left(-3n-1\right)^2+\left(3n-3\right)^2}=4\sqrt{2}\)

\(\Leftrightarrow27n^2-54n+27=0\Rightarrow n=1\)

\(\Rightarrow C\left(1;1;1\right)\Rightarrow m+n+p=3\)

1) Gọi n là số nghiệm của phương trình sin(2x+ \(30^o\))= \(\frac{\sqrt{3}}{2}\) trên khoảng (\(-180^o\); \(180^o\)). Tìm n 2) Gọi (C) là đồ thị của hàm số y= \(\log_{2018}x\) và (C') là đồ thị của hàm số y= f(x), (C') đối xứng với (C) qua trục tung. hàm số y= \(\left|f\left(x\right)\right|\) đồng biến trên khoảng nào ? 3) Cho hàm số y= \(x^3\)+ \(3x^2\)+ 3x+5 có đồ thị (C). Tìm tất cả những giá trị nguyên của...
Đọc tiếp

1) Gọi n là số nghiệm của phương trình sin(2x+ \(30^o\))= \(\frac{\sqrt{3}}{2}\) trên khoảng (\(-180^o\); \(180^o\)). Tìm n

2) Gọi (C) là đồ thị của hàm số y= \(\log_{2018}x\) và (C') là đồ thị của hàm số y= f(x), (C') đối xứng với (C) qua trục tung. hàm số y= \(\left|f\left(x\right)\right|\) đồng biến trên khoảng nào ?

3) Cho hàm số y= \(x^3\)+ \(3x^2\)+ 3x+5 có đồ thị (C). Tìm tất cả những giá trị nguyên của k \(\in\) \(\left[-2019;2019\right]\) để trên đồ thị (C) có ít nhất một điểm mà tiếp tuyến tại đó vuông góc với đường thẳng (d): y=(k-3)x

4) Cho 2 số phức \(z_1\), \(z_2\) thỏa mãn \(\left|z_1\right|\)=4, \(\left|z_2\right|\)=6 và \(\left|z_1+z_2\right|=10\). Giá trị của \(\frac{\left|z_1-z_2\right|}{2}\)

5) Cho hàm số y= \(\frac{x^4}{4}-\frac{mx^3}{3}+\frac{x^2}{2}-mx+2019\) (m là tham số). Gọi S là tập hợp tất cả những giá trị nguyên của tham số m để hàm số đã cho đồng biến trên khoảng (6;+∞). Tính số phần tử của S biết rằng \(\left|m\right|\le2020\)

0
1 tập xác định của hàm số y=\(\left(x+3\right)^{-2}\) là 2 kết quả của tích phân I= \(\int_0^2\) \(x^{2020}\) dx là 3 cho khối chóp có tứ giác có đấy là hình vuông cạnh bằng 2, và chiều cao h =3. Tính thể tích của khối chóp đã cho 4 cho a là số thực dương khác 1. Tính I=\(3log_a\sqrt[3]{a}\) A I=1 B I=9 C I=\(\frac{1}{9}\) D I= \(\frac{1}{3}\) 5 cho hình trụ có độ dài đường sinh l và...
Đọc tiếp

1 tập xác định của hàm số y=\(\left(x+3\right)^{-2}\)

2 kết quả của tích phân I= \(\int_0^2\) \(x^{2020}\) dx là

3 cho khối chóp có tứ giác có đấy là hình vuông cạnh bằng 2, và chiều cao h =3. Tính thể tích của khối chóp đã cho

4 cho a là số thực dương khác 1. Tính I=\(3log_a\sqrt[3]{a}\)

A I=1 B I=9 C I=\(\frac{1}{9}\) D I= \(\frac{1}{3}\)

5 cho hình trụ có độ dài đường sinh l và bán kính r. Nếu độ dài đường sinh khối trụ tăng lên 3 lần, diện tích đấy k đổi thì thể tích khối trụ sẽ tăng lên

A 3 lần B \(\frac{1}{3}\) lần C 9 lần D 27 lần

6 Tọa độ giao điểm hai đường tiệm cận của đồ thị hàm số y= \(\frac{x-2}{x+1}\)

A I(1;1) B I(-1;1) C I(1;-1) D I(-1;-1)

7 tập nghiệm của bất phương trình \(log_4\left(x^2+2x-3\right)< \frac{1}{2}\)

A \(\left(-\infty;-3\right)\cup\left(1;+\infty\right)\) B \(\left(-1-\sqrt{6};-3\right)\cup\left(1;-1+\sqrt{6}\right)\) C [-3;1] D (-3;1)

8 giả sử \(\int_0^9\) f(x) dx=37 và \(\int_9^0\) g(x) . Khi đó i=\(\int_0^9\) [2f(x)+3g(x)] dx bằng

9 cho số phức z=\(\frac{1}{3-4i}\) . số phức liên hợp của z là

10 cho hai số phức z1=1+5i và z2=3-2i . Trên mặt phẳng tọa độ, điểm biểu diễn của số phức \(\overline{z}+iz_2\) là điểm nào dưới đấy

A. P(-1;-2) B.N(3;8) C.P(3;2) D Q(3;-2)

11 Trong ko gian oxyz , cho đường thẳng d : \(\frac{x +1}{1}=\frac{y-2}{3}=\frac{z}{-2}\) đi qua điểm M(0;5;m) . Gía trị của m là

A . m=0 B.m=-2 C.m=2 D.m=-1

12 Cho lăng trụ đúng ABC.\(A^,B^,C^,\) có đáy \(\Delta\) ABC vuông cân tại B ,AC =\(2\sqrt{2a}\) .Góc giữa đường thẳng \(A^,B\) và mặt phẳng (ABC) bằng \(60^0\) . Tính độ dài cạnh bên của hình lăng trụ

4
NV
6 tháng 6 2020

11.

Thay tọa độ M vào pt d ta được:

\(\frac{1}{1}=\frac{3}{3}=\frac{m}{-2}\Rightarrow m=-2.1=-2\)

12.

\(AA'\perp\left(ABC\right)\Rightarrow AB\) là hình chiếu vuông góc của A'B lên (ABC)

\(\Rightarrow\widehat{A'BA}\) là góc giữa A'B và (ABC)

\(\Rightarrow\widehat{A'BA}=60^0\)

\(AB=\frac{AC}{\sqrt{2}}=2a\Rightarrow AA'=AB.tan60^0=2a\sqrt{3}\)

NV
6 tháng 6 2020

8.

\(I=2\int\limits^9_0f\left(x\right)dx+3\int\limits^9_0g\left(x\right)dx=2.37+3.???=...\)

Đề thiếu, bạn tự điền số và tính

9.

\(z=\frac{1}{3-4i}=\frac{3+4i}{\left(3-4i\right)\left(3+4i\right)}=\frac{3}{25}+\frac{4}{25}i\)

\(\Rightarrow\overline{z}=\frac{3}{25}-\frac{4}{25}i\)

10.

\(\overline{z_1}=1-5i\) \(\Rightarrow\overline{z_1}+iz_2=1-5i+i\left(3-2i\right)=3-2i\)

Điểm biểu diễn là \(Q\left(3;-2\right)\)