Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có \(\hept{\begin{cases}2^{24}=\left(2^6\right)^4=64^4\\3^{16}=\left(3^4\right)^4=81^4\end{cases}}\)
Mà \(64< 81\)
\(\Rightarrow64^4< 81^4\)
\(\Rightarrow2^{24}< 3^{16}\)
b) Ta có \(\hept{\begin{cases}2^{300}=\left(2^3\right)^{100}=8^{100}\\3^{200}=\left(3^2\right)^{100}=9^{100}\end{cases}}\)
Mà 8 < 9
\(\Rightarrow8^{100}< 9^{100}\)
\(\Rightarrow2^{300}< 3^{200}\)
c) Ta có \(7^{20}=\left(7^4\right)^5=2401^5\)
Ta có 71 < 2401
\(\Rightarrow71^5< 2401^5\)
\(\Rightarrow71^5< 7^{20}\)
!! K chắc câu c
@@ Học tốt
Chiyuki Fujito
a) \(2^{24}=\left(2^3\right)^8=8^8\)
\(3^{16}=\left(3^2\right)^8=9^8\)
Ta thấy 8<9\(\Rightarrow8^8< 9^8\Rightarrow2^{24}< 3^{16}\)
b) \(2^{300}=\left(2^3\right)^{100}=8^{100}\)
\(3^{200}=\left(3^2\right)^{100}=9^{100}\)
Thấy \(8< 9\Rightarrow8^{100}< 9^{100}\Rightarrow2^{300}< 3^{200}\)
c) \(7^{20}=\left(7^4\right)^5=2401^5\)
Ta thấy \(71< 2401\Rightarrow71^5< 2401^5\Rightarrow71^5< 7^{20}\)
\(\text{a, }2^{30}=8^{10}\)
\(\text{ }3^{20}=\left(3^2\right)^{10}=9^{10}\)
\(\text{Vậy }2^{30}< 3^{20}\)
\(\text{b, }5^{300}=\left(5^3\right)^{100}=125^{100}\)
\(3^{500}=\left(3^5\right)^{100}=243^{100}\)
\(\text{Vậy }5^{300}< 243^{100}\)
c) Đặt \(A=2^0+2^1+2^2+...+2^{50}\)
\(\Leftrightarrow2A=2^1+2^2+2^3...+2^{51}\)
\(\Leftrightarrow2A-A=2^1+2^2+2^3...+2^{51}\)\(-2^0-2^1-2^2-...-2^{50}\)
\(\Leftrightarrow A=2^{51}-2^0=2^{51}-1< 2^{51}\)
Vậy \(2^0+2^1+2^2+...+2^{50}< 2^{51}\)
a)Ta có: \(\hept{\begin{cases}2^{30}=\left(2^3\right)^{10}=8^{10}\\3^{30}=\left(3^3\right)^{10}=27^{10}\\4^{30}=\left(2^2\right)^{30}=2^{60}\end{cases}}\)và \(\hept{\begin{cases}3^{20}=\left(3^2\right)^{10}=9^{10}\\6^{20}=\left(6^2\right)^{10}=36^{10}\\8^{20}=\left(2^3\right)^{20}=2^{60}\end{cases}}\)
Mà \(8^{10}< 9^{10}\); \(27^{10}< 36^{10}\);\(2^{60}=2^{60}\)nên
\(8^{10}+27^{10}+2^{60}< 9^{10}+36^{10}+2^{60}\)
hay \(2^{30}+3^{30}+4^{30}< 3^{20}+6^{20}+8^{20}\)
a)-17/24 > -25/31
b)-27/38 < -125/195
c)-22/111> -27/134
nhớ k nha!!!!!!!!!!!!!!!!!!
a, \(\frac{-17}{24}< \frac{-25}{31}\)
b,\(\frac{-27}{38}< \frac{-125}{195}\)
c,\(\frac{-22}{111}>\frac{-27}{134}\)
Ta có B = \(\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{2014}}\)
=> 4B = \(1+\frac{1}{4}+...+\frac{1}{4^{2013}}\)
Lấy 4B trừ B theo vế ta có :
4B - B = \(\left(1+\frac{1}{4}+...+\frac{1}{4^{2013}}\right)-\left(\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{2014}}\right)\)
=> 3B = \(1-\frac{1}{4^{2014}}\)
=> B = \(\left(1-\frac{1}{4^{2014}}\right):3=\frac{1}{3}-\frac{1}{3.4^{2014}}\)
Lại có C = \(\frac{1}{52}\left(\frac{35}{1.3}+\frac{35}{3.5}+...+\frac{35}{103.105}\right)=\frac{1}{52}.\frac{35}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{103.105}\right)\)
\(=\frac{35}{104}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{103}-\frac{1}{105}\right)\)
\(=\frac{35}{104}.\left(1-\frac{1}{105}\right)=\frac{35}{104}.\frac{104}{105}=\frac{1}{3}\)
Vì \(\frac{1}{3}-\frac{1}{3.4^{104}}< \frac{1}{3}\Rightarrow B< C\)
Vậy B < C