Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tam giác ABC có AB = AC (theo đề bài)
Suy ra: tam giác ABC cân tại A( dựa theo định nghĩa tam giác cân)
=> góc ABC = góc ACB ( dựa theo tính chất tam giác cân)
=> góc ABC = góc ACB = \(\left(180^0-36^0\right):2=72^0\)
Có góc ACB + góc ACE = \(180^0\) (2 góc kề bù)
=> góc ACE = \(180^0\)- góc ACB
=> góc ACE = \(180^0-72^0=108^0\)
Tam giác ACE có góc CAE + góc CEA + góc ACE = \(180^0\)(tổng 3 góc của 1 tam giác)
=> góc CEA = \(180^0-\left(108^0+36^0\right)=36^0\)(*)
Tam giác ADE có góc BDA = góc CEA = \(36^0\)
=> tam giác ADE cân tại A ( dựa theo tính chất của tam giác cân)
Ta có : AB=AC
=> \(\Delta ABC\) là tam giác vuông cân tại A ( vì tam giác có 2 cạnh bằng nhau )
=> \(\widehat{ABC}=A\widehat{CB}\) ( hai cạnh đáy của tam giác cân )
=> \(\widehat{ABC}=A\widehat{CB}=45^0\)
=> \(\widehat{CBD}=\widehat{A}+\widehat{BCA}=135^0\) ( góc ngoài của tam giác )
Ta lại có:
BD=BC
=> \(\Delta BCD\) cân tại B ( vì tam giác có 2 cạnh bằng nhau )
=> \(\widehat{BDC}=\widehat{BCD}\) ( hai cạnh đáy của tam giác cân )
=> \(\widehat{BDC}=\widehat{BCD}=\dfrac{\left(180^0-135^0\right)}{2}=\dfrac{45^0}{2}=22,5^0\)
Mà \(\widehat{ACD}=\widehat{BCA}+\widehat{BCD}\)
=> \(\widehat{ACD}=45^0+22,5^0=67,5^0\)
Vậy trong \(\Delta ACD\) có :
\(\left\{{}\begin{matrix}\widehat{A}=90^0\\\widehat{ADC}=22,5^0\\\widehat{ACD}=67,5^0\end{matrix}\right.\)
A( -3; 3 )
B ( -1; 2 )
C ( -5; 0 )
M ( 2; 3 )
N ( 5; 3 )
Q ( 2; 1 )
P (5; 1 )
a) Tọa độ các điểm trong hình vẽ là:
A(2;-2); B(4;0); C(-2;0); D(2;3); E(2;0);F(-3;2); G(-2;-3)
b) Ta có hình vẽ ∆ABC:
A(-3;4); B(-3;1); C(1;-1).
A (0,5; 2) B (2;2) C (2;0)
D (0,5; 0) P (-3;3) Q (-1;1)
R(-3;1)
- A(0,5 ; 2); B(2 ; 2); C(2 ; 0); D(0,5 ; 0)
- P(-3 ; 3) ; Q(-1 ; 1) ; R(-3 ; 1)
Hình 47:
x+ 900 + 550 = 1800
⇒ x = 1800 – ( 900+ 550)= 350
Hình 48:
x+ 400 + 300 = 1800
⇒ x= 1800 – ( 400+ 390)= 1100
Hình 49:
x+ x + 500= 1800
⇒2x= 1800 – 500 = 1300
⇒ x= 1300 : 2 = 650
Hình 50:
y = 600 + 400= 1000 (Mỗi góc ngoài của một tam giác bằng tổng hai góc không kề với nó)
Ta có: x + 400 = 1800 (kề bù)
⇒x = 1800 – 400 = 1400
Hình 51:
Trong ∆ ABC có
(400+ 400) + 700 + y = 1800
⇒ y + 1500 = 1800
⇒ y = 1800 – 1500= 300
Trong ∆ ACD có:
x + 400 + 300= 1800 ( Góc y = 300 giải được ở trên)
x= 1800 – ( 400+ 300)= 1100
Ta có:
^ECD = ^ACB (2 góc đối đỉnh).
Vì a // b nên:
^ABC = ^CED và ^CDE = BAC (2 góc so le trong)
Vậy các cặp góc bằng nhau của 2 tam giác CAB và CDE là: ^ACB = ^ECD; ^BAC = ^CDE; ^ABC = ^CED.