Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Tia BO là tia phân giác của \(\widehat {ABC}\) vì tia BO nằm giữa 2 tia BA và BC, tạo với 2 cạnh BA và BC 2 góc bằng nhau.
Tia DO là tia phân giác của \(\widehat {ADC}\) vì tia DO nằm giữa 2 tia DA và DC, tạo với 2 cạnh DA và DC 2 góc bằng nhau
b) Vì BO là tia phân giác của \(\widehat {ABC}\) nên \(\widehat {ABO} = \widehat {CBO} = \frac{1}{2}.\widehat {ABC} = \frac{1}{2}.100^\circ = 50^\circ \)
Vì DO là tia phân giác của \(\widehat {ADC}\)nên \(\widehat {ADO} = \widehat {CDO} = \frac{1}{2}.\widehat {ADC} = \frac{1}{2}.60^\circ = 30^\circ \)
Vậy \(\widehat {ABO} = 50^\circ ;\widehat {ADO} = 30^\circ \)
a) Ta có:
∠mOx + ∠nOx = 180⁰ (kề bù)
⇒ ∠nOx = 180⁰ - ∠mOx
= 180⁰ - 30⁰
= 150⁰
Do Ot là tia phân giác của ∠nOx
⇒ ∠nOt = ∠nOx : 2
= 150⁰ : 2
= 75⁰
b) Do a // b
⇒ ∠B₄ = ∠A₄ = 65⁰ (đồng vị)
Ta có:
∠B₃ + ∠B₄ = 180⁰ (kề bù)
⇒ ∠B₃ = 180⁰ - ∠B₄
= 180⁰ - 65⁰
= 115⁰
Tính số đo góc �3^B3.
Hướng dẫn giải:a) ���^+���^=180∘mOx+xOn=180∘
Vậy ���^=180∘−30∘=150∘nOx=180∘−30∘=150∘.
��Ot là tia phân giác của ���^nOx, suy ra ���^=12.���^=75∘nOt=21.nOx=75∘.
b) a // b suy ra �4^=�2^=65∘A4=B2=65∘ (hai góc so le trong).
Mặt khác, ta có �2^+�3^=180∘B2+B3=180∘
Suy ra �3^=180∘−�2^=115∘B3=180∘−B2=115∘.
\(\widehat {{O_1}}\) có cạnh Ox và Ot, đỉnh O
\(\widehat {{O_3}}\) có cạnh Oy và Oz, đỉnh O
Ta có: \(\widehat {{O_1}}\) và \(\widehat {{O_3}}\) có mỗi cạnh của góc này là cạnh đối của một cạnh của góc kia.
\(\widehat {{O_1}}\) và \(\widehat {{O_3}}\) có chung đỉnh
a/
\(Ax\perp m\left(gt\right);By\perp m\left(gt\right)\) => Ax//By (cùng vuông góc với m)
Mà Cz//Ax (gt)
=> Cz//By (cùng // với Ax)
b/
\(\widehat{BCz}=\widehat{ACB}-\widehat{C}=110^o-30^o=80^o\)
Ta có
Cz//By (cmt) \(\Rightarrow\widehat{BCz}=\widehat{CBy}=80^o\) (góc so le trong)
c/
\(CD\perp Ax\left(gt\right)\Rightarrow\widehat{ADC}=90^o\)
Cz//Ax (gt) \(\Rightarrow\widehat{A}=\widehat{C}=30^o\) (Góc so le trong)
Xét tg vuông ACD có
\(\widehat{ACD}=\widehat{ADC}-\widehat{A}=90^o-30^o=60^o\)
a) Ta có:
∠ABD = ∠CDE = 60⁰ (gt)
Mà ∠ABD và ∠CDE là hai góc so le trong
⇒ AB // CD
b) Vẽ tia Am là tia đối của tia AB
Do AB // CD
⇒ ∠mAC = ∠ACD (so le trong)
Mà ∠mAC + ∠BAC = 180⁰ (kề bù)
⇒ ∠ACD + ∠BAC = 180⁰
a)
Các cặp góc đối đỉnh trên hình vẽ là: \(\widehat {aId}\) và \(\widehat {bIc}\); \(\widehat {aIc}\) và \(\widehat {bId}\)
b)
Bước 1: Vẽ góc \(\widehat {xOy}\)
Bước 2: Vẽ tia Ot là tia đối của tia Ox
Bước 3: Vẽ tia Oz là tia đối của tia Oy
Ta được \(\widehat {tOz}\) đối đỉnh với \(\widehat {xOy}\)
c) Cặp góc \(\widehat {xDy}\) và \(\widehat {zDt}\) trong Hình 8a và cặp góc \(\widehat {xMz}\) và \(\widehat {tMy}\) trong Hình 8b không phải là các cặp góc đối đỉnh vì mỗi cạnh của góc này không là cạnh đối của một cạnh của góc kia
Ở Hình 8a, Dt không là tia đối của Dx hay Dy; Dz không là tia đối của Dx hay Dy
Ở Hình 8b, My là tia đối của Mx nhưng Mt không là tia đối của Mz
Chú ý: 2 đường thẳng cắt nhau tạo ra 2 cặp góc đối đỉnh
2 góc kề bù trong hình là: góc mOt và tOn
Ta có:
\(\begin{array}{l}\widehat {mOt} + \widehat {tOn} = 180^\circ \\\widehat {mOt} = 180^\circ - \widehat {tOn} = 180^\circ - 60^\circ = 120^\circ \end{array}\)
Đoạn thẳng đơn vị được chia thành 6 phần bằng nhau, lấy một đoạn làm đơn vị mới, đơn vị mới bằng \(\frac{1}{6}\) đơn vị cũ.
Điểm A nằm bên phải gốc O và cách O một đoạn bằng 10 đơn vị mới. Do đó điểm A biểu diễn số hữu tỉ \(\frac{{10}}{6} = \frac{5}{3}\)
Điểm B nằm bên trái gốc O và cách O một đoạn bằng 5 đơn vị mới. Do đó điểm B biểu diễn số hữu tỉ \(\frac{{ - 5}}{6}\)
Điểm C nằm bên trái gốc O và cách O một đoạn bằng 13 đơn vị mới. Do đó điểm C biểu diễn số hữu tỉ \(\frac{{ - 13}}{6}\)
Cách 1: Vì a//b, a \( \bot \) CD nên b \( \bot \) CD. Do đó, \(\widehat {{D_1}}=90^\circ \).
Vì a//b nên \(\widehat {{A_1}} + \widehat {{B_1}}=180^0\) (2 góc trong cùng phía) nên \(\widehat {{B_1}} + 70^\circ = 180^\circ \Rightarrow \widehat {{B_1}} = 180^\circ - 70^\circ = 110^\circ \)
Vậy \(\widehat {{B_1}} =110^0; \widehat {{D_1}}=90^\circ \).
Cách 2: Vì a // b nên
+) \(\widehat {{C_1}} = \widehat {{D_2}}\) ( 2 góc đồng vị), mà \(\widehat {{C_1}} = 90^\circ \) nên \(\widehat {{D_2}} = 90^\circ \). Do đó, b\( \bot \) CD nên \(\widehat {{D_1}}=90^\circ \)
+) \(\widehat {{A_1}} = \widehat {{B_2}}\) ( 2 góc so le trong) nên \(\widehat {{B_2}} = 70^\circ \)
Ta có: \(\widehat {{B_1}} + \widehat {{B_2}} = 180^\circ \)( 2 góc kề bù) nên \(\widehat {{B_1}} + 70^\circ = 180^\circ \Rightarrow \widehat {{B_1}} = 180^\circ - 70^\circ = 110^\circ \).
Vậy \(\widehat {{B_1}} =110^0; \widehat {{D_1}}=90^\circ \).