Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
Thay n = 2 vào hệ phương trình ta được
\(\begin{cases}3x-2y=7.2-1\\x-2y=-5.2-3\end{cases}\Leftrightarrow\hept{\begin{cases}3x-2y=13\\x-2y=-13\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}3x-x=13-\left(-13\right)\\3x-2y=13\end{cases}}\Leftrightarrow\hept{\begin{cases}2x=26\\3x-2y=13\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=13\\3.13-13=2y\end{cases}\Leftrightarrow\hept{\begin{cases}x=13\\2y=26\end{cases}}\Leftrightarrow\hept{\begin{cases}x=13\\y=13\end{cases}}}\)
Vậy khi n = 2 hệ phương trình có nghiệm x = y = 13
b)
Ta có
\(\hept{\begin{cases}3x-2y=7n-1\\x-2y=-5n-3\end{cases}\Leftrightarrow\hept{\begin{cases}3x-x=7n-\left(-5n\right)-1-\left(-3\right)\\3x-2y=7n-1\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}2x=12n+2\\3x-2y=7n-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6n+1\\2y=3\left(6n+1\right)-7n+1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=6n+1\\2y=11n+4\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6n+1\\y=\frac{11}{2}n+2\end{cases}}\)
Vậy HPT có nghiệm \(\hept{\begin{cases}x=6n+1\\y=\frac{11}{2}n+2\end{cases}}\)
Theo bài ra ta có
\(x+5y-n=-2\)
\(\Leftrightarrow6n+1+5\left(\frac{11}{2}n+2\right)-n=-2\)
\(\Leftrightarrow6n+\frac{55}{2}n-n+1+10=-2\)
\(\Leftrightarrow\frac{65}{2}n=-2-1-10=-13\)
\(\Leftrightarrow n=-\frac{13.2}{65}=-\frac{2}{5}\)
Vậy \(n=-\frac{2}{5}\) là giá trị cần tìm
Mình làm phần c
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Theo bài ta có
\(x^2-y=\left(6n+1\right)^2-\left(\frac{11}{2}n+2\right)\)
\(=36n^2+12n+1-\frac{11}{2}n-2\)
\(=36n^2+\frac{13}{2}n-1\)
\(=\left[\left(6n\right)^2+2.6n.\frac{13}{24}+\frac{169}{576}\right]-1-\frac{169}{576}\)
\(=\left(6n+\frac{13}{24}\right)^2-\frac{745}{576}\ge-\frac{745}{576}\)
Dấu " = " xảy ra \(\Leftrightarrow\left(6n+\frac{13}{24}\right)^2=0\)
\(\Leftrightarrow6n+\frac{13}{24}=0\)
\(\Leftrightarrow n=-\frac{13}{144}\)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
số lẻ quá xem lại xem có đúng không nhé
\(a,\hept{\begin{cases}x+y=3\\x-2y=7\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=3-y\\3-y-2y=7\end{cases}\Leftrightarrow\hept{\begin{cases}x=3-y\\-3y=4\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}x=3-\left(-\frac{4}{3}\right)\\y=-\frac{4}{3}\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{13}{3}\\y=-\frac{4}{3}\end{cases}}}\)
\(b,\hept{\begin{cases}2x+y=5\\4x+2y=11\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}4x+2y=10\left(1\right)\\4x+2y=11\left(2\right)\end{cases}}\)
Lấy ( 1 ) trừ ( 2 ) Ta được 0x + 0y = - 1
=> hệ pt vô nghiệm
\(c,\hept{\begin{cases}\sqrt{2}x-\sqrt{3}y=1\\x+\sqrt{3}y=\sqrt{2}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{2}.\left(\sqrt{2}-\sqrt{3}y\right)-\sqrt{3}y=1\\x=\sqrt{2}-\sqrt{3}y\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2-\sqrt{6}y-\sqrt{3}y=1\\x=\sqrt{2}-\sqrt{3}y\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}-\left(\sqrt{6}+\sqrt{3}\right)y=-1\\x=\sqrt{2}-\sqrt{3}y\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=\frac{1}{\sqrt{6}+\sqrt{3}}\\x=\sqrt{2}-\sqrt{3}.\frac{1}{\sqrt{6}+\sqrt{3}}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=\frac{1}{\sqrt{6}+\sqrt{3}}\\x=\sqrt{2}-\frac{\sqrt{3}}{\sqrt{6}+\sqrt{3}}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=\frac{1}{\sqrt{6}+\sqrt{3}}\\x=1\end{cases}}\)
\(\hept{\begin{cases}x+y=a+b\\x^2+y^2=a^2+b^2\end{cases}\Leftrightarrow\hept{\begin{cases}x+y=a+b\\x^2-a^2=b^2-y^2\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}x-a=b-y\\\left(x-a\right)\left(x+a\right)=\left(y-b\right)\left(y+b\right)\end{cases}}\) (1)
Nếu \(x=a;y=b\Rightarrow x^n+y^n=a^n+b^n\)
Nếu \(x\ne a;x\ne b\) Từ \(\left(1\right)\Rightarrow x+a=-y-b\Rightarrow x+y=-a-b\)
Mà \(x+y=a+b\Rightarrow-a-b=a+b\Leftrightarrow2\left(a+b\right)=0\Rightarrow\hept{\begin{cases}a=-b\\x=-y\end{cases}}\)
\(\Rightarrow x^n+y^n=a^n+b^n=0\)