Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/
a3+b3+c3=2abc
vì a+b+c=0
=> a+b=-c
GTNN của c là -1. với c=1=> a+b=-1=> a=0và b=-1 hoặc a=-1 và b=0
khi đó. A=2.(-1).1.0=0
=> GTNN của A là......
anh làm mẫu 2 câu còn lại em tự làm cho quen nhé, mấy cái hpt như này thì em dùng phương pháp cộng đại số là tối ưu nhất
a, \(\hept{\begin{cases}2x+y=5\\x-y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}3x=6\\y=x-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=1\end{cases}}\)
b, \(\hept{\begin{cases}2x-3y=3\\2x+5y=5\end{cases}}\Leftrightarrow\hept{\begin{cases}8y=2\\x=\frac{3+3y}{2}\end{cases}\Leftrightarrow\hept{\begin{cases}y=\frac{1}{4}\\x=\frac{15}{8}\end{cases}}}\)
Toán Tuổi Thơ 2 số 178 Bài 6 chứ gì
Ta có:\(xy+yz+zx+x+y+z\)
\(=xyz+xy+yz+zx+x+y+z+1-xyz-1\)
\(=xy\left(z+1\right)+x\left(z+1\right)+y\left(z+1\right)+\left(z+1\right)-xyz-1\)
\(=\left(xy+x+y+1\right)\left(z+1\right)-xyz-1\)
\(=\left[x\left(y+1\right)+\left(y+1\right)\right]\left(z+1\right)-xyz-1\)
\(=\left(x+1\right)\left(y+1\right)\left(z+1\right)-xyz-1\)
Lần lượt thay \(x=\frac{b}{a-b};y=\frac{c}{b-c};z=\frac{a}{c-a}\) vào ta có:
\(xy+yz+zx+x+y+z\)
\(=\left(\frac{b}{a-b}+1\right)\left(\frac{c}{b-c}+1\right)\left(\frac{a}{c-a}+1\right)-\frac{b}{a-b}.\frac{c}{b-c}.\frac{a}{c-a}-1\)
\(=\frac{a}{a-b}.\frac{b}{b-c}.\frac{c}{c-a}-\frac{b}{a-b}.\frac{c}{b-c}.\frac{a}{c-a}-1\)
\(=-1\)
Vậy giá trị của \(xy+yz+zx+x+y+z\) không phụ thuộc vào a,b,c
từ phương trình thứ nhất ta có :
\(y=-x+3m+2\) thế xuống phương trình dười : \(3x+2x-6m-4=11-m\Leftrightarrow x=3+m\Rightarrow y=2m-1\)
b. ta có \(x^2-y^2=\left(m+3\right)^2-\left(2m-1\right)^2=-3m^2+10m+8=-3\left(m-\frac{5}{3}\right)^2+\frac{49}{3}\le\frac{49}{3}\)
Dấu bằng xảy ra khi m=5/3
Ta có :\(A=\frac{1}{ab}+\frac{1}{a^2+b^2}=\frac{1}{2ab}+\frac{1}{a^2+b^2}+\frac{3}{2ab}\)
\(A\ge\frac{4}{2ab+a^2+b^2}+\frac{3}{2ab}\)
\(A\ge\frac{4}{\left(a+b\right)^2}+\frac{3}{\frac{\left(a+b\right)^2}{2}}\)
\(A\ge4+6=10\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}a^2+b^2=2ab\\a+b=1\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}a=b\\a+b=1\end{cases}}\Leftrightarrow a=b=\frac{1}{2}\)
Vậy Min A = 10 <=> a = b = 1/2
Gọi số thỏa đề bài là \(\frac{x}{7}\)ta có
a < \(\frac{x}{7}\)< b \(\Leftrightarrow7a< x< 7b\)
Vây x \(\in\)(7a + 1 đến 7b - 1)
Tổng các số đó là
\(\frac{7a+1}{7}+\frac{7a+2}{7}+...+\frac{7b-1}{7}\)
\(=\frac{1}{7}\left(7a+1+...+7b-1\right)\)
\(=\frac{1}{7}\times\frac{\left(7b-7a-1\right)\left(7a+7b\right)}{2}\)
Bạn làm tiếp nhé