Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left\{{}\begin{matrix}x+y=2m-1\left(1\right)\\x^2+y^2=m^2+2m-3\left(2\right)\end{matrix}\right.\)
\(\left(2\right)\Leftrightarrow\left(x+y\right)^2-2xy=m^2+2m-3\)
\(\Leftrightarrow\left(2m-1\right)^2-m^2-2m+3=2xy\)
\(\Leftrightarrow2xy=3m^2-6m+4\)
\(P_{min}\Leftrightarrow3m^2-6m+4\left(min\right)\)
\(3\left(m^2-2m+\dfrac{4}{3}\right)=3\left(m^2-2m+1+\dfrac{1}{3}\right)=3\left[\left(m-1\right)^2+\dfrac{1}{3}\right]=3\left(m-1\right)^2+1\ge1\)
\("="\Leftrightarrow m=1\)
a. Hệ có nghiệm duy nhất \(\Rightarrow m\ne\pm2\)
\(\left\{{}\begin{matrix}mx+4y=10-m\\mx+m^2y=4m\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}mx+4y=10-m\\\left(m^2-4\right)y=5m-10\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}y=\dfrac{5}{m+2}\\x=\dfrac{-m+8}{m+2}\end{matrix}\right.\)
Để \(x>0,y>0\Rightarrow\left\{{}\begin{matrix}\dfrac{5}{m+2}>0\\\dfrac{-m+8}{m+2}>0\end{matrix}\right.\) \(\Rightarrow-2< m< 8\)
\(\Rightarrow m=\left\{-1;0;...;7\right\}\)
b. Hệ có nghiệm là các số dương khi \(-2< m< 8\)
y = 4- x
Ròi bạn thay vào phương trình (1) làm như bình thường