\(\left\{{}\begin{matrix}x+my=2\\mx-2y=1\end{matrix}\right.\)

<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 6 2017

\(\left\{{}\begin{matrix}x+my=2\left(1\right)\\mx-2y=1\left(2\right)\end{matrix}\right.\)

thay pt (1) vào pt (2) ta duoc:\(\left\{{}\begin{matrix}x+my=2\\mx-\left(x+my\right)y=1\left(3\right)\end{matrix}\right.\)

PT (3) tương đương: \(mx-y^2m-yx-1=0\)

<=>\(-y^2m-yx+mx-1=0\)

\(\Delta=b^2-4ac=x^2-4.\left(-m\right).\left(mx-1\right)=x^2+4m^2x-4m\)

theo Vi-ét ta có:\(\left\{{}\begin{matrix}S=\dfrac{-b}{a}=\dfrac{-x}{m}\\P=\dfrac{c}{a}=\dfrac{-mx+1}{m}\end{matrix}\right.\)

Để pt có hai nghiệm lớn hơn 0<=>\(\left\{{}\begin{matrix}\Delta>0\\S>0\\P>0\end{matrix}\right.\)hay \(\left\{{}\begin{matrix}x^2+4m^2x-4m>0\\\dfrac{-x}{m}>0\\\dfrac{-mx+1}{m}>0\end{matrix}\right.\)

tới chỗ này là tìm m được rồi.Chúc bạn học tốthihi

2 tháng 6 2017

cảm ơn bạn nhiều

11 tháng 2 2019

hệ có nghiệm duy nhất <=> \(\dfrac{1}{m}\ne\dfrac{m}{-2}\)\(\Leftrightarrow m^2\ne-2\) đúng \(\forall m\)

vây hệ luôn có nghiệm duy nhất là x=\(\dfrac{m+4}{m^2+2}\) và y=\(\dfrac{2m-1}{m^2+2}\)

theo giả thiết x>0 , y>0 =>

\(\left\{{}\begin{matrix}\dfrac{m+4}{m^2+2}>0\\\dfrac{2m-1}{m^2+2}>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m+4>0\\2m-1>0\end{matrix}\right.\)vì m2+2>0 \(\forall m\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>-4\\m>\dfrac{1}{2}\end{matrix}\right.\)\(\Leftrightarrow m>\dfrac{1}{2}\)

7 tháng 2 2020

giải pt theo cách thế \(\Rightarrow\left\{{}\begin{matrix}x=1+\frac{1}{2m+1}>1\\y=\frac{2m}{2m+1}>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2m+1>0\\2m>0\end{matrix}\right.\) \(\Leftrightarrow m>0\) vậy ...

7 tháng 2 2020

\(\left\{{}\begin{matrix}x+2y=2\left(1\right)\\mx-y=m\left(2\right)\end{matrix}\right.\)

từ (2) ==> \(y=mx-m\)

thế vào (1) ==> \(x+2\left(mx-m\right)=2\Leftrightarrow\left(2m+1\right)x=2m+2\Leftrightarrow x=\frac{2m+2}{2m+1}=1+\frac{1}{2m+1}\)

\(\Rightarrow y=m\left(\frac{2m+2}{2m+1}\right)-m=\frac{2m^2+2m}{2m+1}-m=\frac{m}{2m+1}\)

\(x>1;y>0\) \(\Rightarrow\left\{{}\begin{matrix}1+\frac{1}{2m+1}>1\\\frac{m}{2m+1}>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\frac{1}{2m+1}>0\\\frac{m}{2m+1}>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2m+1>0\\m>0\end{matrix}\right.\Leftrightarrow m>0\)

NV
5 tháng 3 2020

1. \(\Leftrightarrow\left\{{}\begin{matrix}mx+m^2y=3m\\mx+4y=6\end{matrix}\right.\)

\(\Rightarrow\left(m^2-4\right)y=3\left(m-2\right)\)

\(\Leftrightarrow\left(m-2\right)\left(m+2\right)y=3\left(m-2\right)\)

Để pt có nghiệm duy nhất \(\Rightarrow\left(m-2\right)\left(m+2\right)\ne0\Rightarrow m\ne\pm2\)

Để pt vô nghiệm \(\Rightarrow\left\{{}\begin{matrix}\left(m-2\right)\left(m+2\right)=0\\3\left(m-2\right)\ne0\end{matrix}\right.\) \(\Rightarrow m=-2\)

2. Không thấy m nào ở hệ?

3. Bạn tự giải câu a

b/ \(\left\{{}\begin{matrix}6x+2my=2m\\\left(m^2-m\right)x+2my=m^2-m\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}y=\frac{\left(m-1\right)\left(1-x\right)}{2}\\\left(m^2-m-6\right)x=m^2-3m\end{matrix}\right.\)

Để hệ có nghiệm duy nhất \(\Rightarrow m^2-m-6\ne0\Rightarrow m\ne\left\{-2;3\right\}\)

Khi đó: \(\left\{{}\begin{matrix}x=\frac{m^2-3m}{m^2-m-6}=\frac{m}{m+2}\\y=\frac{\left(m-1\right)\left(1-x\right)}{2}=\frac{m-1}{m+2}\end{matrix}\right.\)

\(x+y^2=1\Leftrightarrow\frac{m}{m+2}+\frac{\left(m-1\right)^2}{\left(m+2\right)^2}=1\)

\(\Leftrightarrow m\left(m+2\right)+\left(m-1\right)^2=\left(m+2\right)^2\)

\(\Leftrightarrow m^2-4m-3=0\Rightarrow\) bấm máy, số xấu

NV
5 tháng 3 2020

4.

\(\Leftrightarrow\left\{{}\begin{matrix}m^2x+my=2m^2\\x+my=m+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(m^2-1\right)x=2m^2-m-1=\left(2m+1\right)\left(m-1\right)\\y=2m-mx\end{matrix}\right.\)

- Với \(m=1\) hệ có vô số nghiệm

- Với \(m=-1\) hệ vô nghiệm

- Với \(m\ne\pm1\) hệ có nghiệm duy nhất:

\(\left\{{}\begin{matrix}x=\frac{\left(2m+1\right)\left(m-1\right)}{\left(m-1\right)\left(m+1\right)}=\frac{2m+1}{m+1}\\y=2m-mx=\frac{m}{m+1}\end{matrix}\right.\)