\(\left\{{}\begin{matrix}3x-my=-9\\mx+2y=16\end{matrix}\right.\)

...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 4 2020

a) \(\hept{\begin{cases}2.\left(m-1\right).x-2.m.y=6m-2\\2.\left(m-1\right).x-\left(m-1\right).y=\left(m-1\right).\left(m+5\right)\end{cases}}\)

=> -2.m.y + ( m-1 ) .y = 6m - 2- ( m2 - m + 5.m -5 ) 

=> ( -m - 1 ) . y = -m2 + m + 2 

hay y = \(\frac{m^2-m-2}{m+1}=\frac{\left(m+1\right).\left(m-2\right)}{\left(m+1\right)}\)

         = m - 2 

Với m \(\ne\)-1 => y = m- 2 

Khi đó x = \(\frac{m+5+y}{2}=\frac{m+5+m-2}{2}=\frac{2m+3}{2}\)

b) \(\hept{\begin{cases}y=\left(m+5\right)+2.x\\m.y=\left(3.m-1\right)-\left(m-1\right).x\end{cases}}\)hay \(\hept{\begin{cases}y=2.x-\left(m+5\right)\\y=\frac{-\left(m-1\right).x+\left(3m-1\right)}{m}\end{cases}}\)

Vậy để hai đường thẳng của hệ cắt nhau cho giá trị nằm ở góc phần tư thứ IV của Oxy => \(\hept{\begin{cases}x>0\\y< 0\end{cases}}\)

=> \(\hept{\begin{cases}x< \frac{m+5}{2}\\x>\frac{3m-1}{m-1}\end{cases}\Rightarrow\hept{\begin{cases}m>3\\m< 6\end{cases}\Rightarrow}\hept{\begin{cases}m=4\\m=5\end{cases}}}\)( Mình cũng không chắc phần này ở đoạn đầu tiên nha ) 

13 tháng 2 2020

x=2 y=3

13 tháng 2 2020

giúp mình với mình cần nộp trong ngày 17/2/2020

28 tháng 12 2022

a) Với \(m=0\) ta có:

\(\left\{{}\begin{matrix}0x+4y=10-0\\x+0y=4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=\dfrac{5}{2}\end{matrix}\right.\) (nhận trường hợp này).

Với \(m\ne0\), ta có:

\(\left\{{}\begin{matrix}mx+4y=10-m\\x+my=4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}mx+4y=10-m\\-mx-m^2y=-4m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(4-m^2\right)y=10-5m\left(1\right)\\x+my=4\left(2\right)\end{matrix}\right.\)

Biện luận:

Với \(m=2\) \(\left(1\right)\Rightarrow0y=0\) (phương trình vô số nghiệm),

Với \(m=-2\Rightarrow0y=20\) (phương trình vô nghiệm).

Với \(m\ne\pm2\Rightarrow y=\dfrac{10-5m}{4-m^2}=\dfrac{5\left(2-m\right)}{\left(2-m\right)\left(2+m\right)}=\dfrac{5}{m+2}\)

Vì \(y>0\Rightarrow\dfrac{5}{m+2}>0\Leftrightarrow m+2>0\Leftrightarrow m>-2\)

Thay \(y=\dfrac{5}{m+2}\) vào (2) ta được:

\(x+\dfrac{5m}{m+2}=4\Leftrightarrow x=\dfrac{8-m}{m+2}\)

Vì x>0 \(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}8-m>0\\m+2>0\end{matrix}\right.\\\left\{{}\begin{matrix}8-m< 0\\m+2< 0\end{matrix}\right.\end{matrix}\right.\Rightarrow-2< m< 8\)

Vì m là số nguyên và \(m\ne2\) nên \(m\in\left\{-1;0;1;3;4;5;6;7\right\}\)

Vậy \(m\in\left\{1;0;1;3;4;5;6;7\right\}\) thì hệ đã cho có nghiệm duy nhất sao cho \(x>0,y>0\).

 

 

28 tháng 12 2022

b) Với \(m=0\) ta có nghiệm \(\left(x;y\right)=\left(4;\dfrac{5}{2}\right)\) (loại).

Với \(m=2\). Ta có hệ vô số nghiệm với nghiệm tổng quát có dạng \(\left\{{}\begin{matrix}x\in R\\y=2-\dfrac{x}{2}\end{matrix}\right.\)

Vì y là số nguyên dương nên:

\(\left\{{}\begin{matrix}x⋮2\\2-\dfrac{x}{2}>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x⋮2\\x< 4\end{matrix}\right.\). Mặt khác x>0.

\(\Rightarrow x=2\Rightarrow y=1\)
Với \(m\ne\pm2\). Ta có \(y=\dfrac{5}{m+2}\).

Vì x,y là các số nguyên dương nên x,y>0. Nên:

\(m\in\left\{-1;0;1;3;4;5;6;7\right\}\) (1')

Mặt khác: \(5⋮\left(m+2\right)\)

\(\Rightarrow m+2\inƯ\left(5\right)\)

\(\Rightarrow m+2\in\left\{1;-1;5;-5\right\}\)

\(\Rightarrow m\in\left\{-1;-3;3;-7\right\}\) (2')

Từ (1') ,(2') \(\Rightarrow m\in\left\{-1;3\right\}\)

Vậy \(m\in\left\{-1;2;3\right\}\) thì hệ có nghiệm \(\left(x;y\right)\) với x,y là số nguyên dương.