K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 2 2017

Ta có D = m − 1 2 m = m 2 + 2 > 0 , ∀ m ∈ R nên hệ phương trình luôn có nghiệm duy nhất

D x = 3 − 1 9 m = 3 m + 9 ;   D y = m 3 2 9 = 9 m − 6

Vậy hệ luôn có nghiệm duy nhất là: x = 3 m + 9 m 2 + 2 y = 9 m − 6 m 2 + 2

Ta có:  A = 3 x − y = 3 3 m + 9 m 2 + 2 − 9 m − 6 m 2 + 2 = 33 m 2 + 2

Vì m Z nên để A nguyên thì  m 2 + 2  là ước của 33 mà  m 2 + 2 ≥ 2  nên ta có các trường hợp sau:

Mà m nguyên dương nên  m ∈ 1 ; 3

Vậy có 2 giá trị nguyên dương của m để A nguyên.

Đáp án cần chọn là: B

AH
Akai Haruma
Giáo viên
31 tháng 7 2019

Bài 1:

Khi $m=1$ thì HPT trở thành:

\(\left\{\begin{matrix} x-2y=-1\\ 2x+y=2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 2x-4y=-2\\ 2x+y=2\end{matrix}\right.\)

\(\Rightarrow (2x+y)-(2x-4y)=2-(-2)\)

\(\Leftrightarrow 5y=4\Rightarrow y=\frac{4}{5}\)

\(x=\frac{2-y}{2}=\frac{2-\frac{4}{5}}{2}=\frac{3}{5}\)

Vậy ...........

b)

HPT \(\Leftrightarrow \left\{\begin{matrix} mx-2y=m-2\\ y=m+1-2x\end{matrix}\right.\Rightarrow mx-2(m+1-2x)=m-2\)

\(\Leftrightarrow x(m+4)=3m(*)\)

Để HPT ban đầu có bộ nghiệm (x,y) duy nhất thì PT $(*)$ phải có nghiệm $x$ duy nhất. Điều này xảy ra khi $m+4\neq 0$ hay $m\neq -4$

AH
Akai Haruma
Giáo viên
31 tháng 7 2019

Bài 2:
a)

Khi $m=2$ thì hệ trở thành:
\(\left\{\begin{matrix} x+2y=1\\ 2x+y=1\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 2x+4y=2\\ 2x+y=1\end{matrix}\right.\)

\(\Rightarrow (2x+4y)-(2x+y)=2-1\)

\(\Leftrightarrow 3y=1\Rightarrow y=\frac{1}{3}\)

Khi đó: \(x=1-2y=1-2.\frac{1}{3}=\frac{1}{3}\)

Vậy HPT có bộ nghiệm duy nhất $(x,y)=(\frac{1}{3}, \frac{1}{3})$

b)

HPT \(\Leftrightarrow \left\{\begin{matrix} x=1-my\\ mx+y=1\end{matrix}\right.\Rightarrow m(1-my)+y=1\)

\(\Leftrightarrow y(1-m^2)=1-m(*)\)

Để HPT ban đầu có nghiệm duy nhất thì PT $(*)$ cũng phải có nghiệm duy nhất. Điều này xảy ra khi \(1-m^2\neq 0\Leftrightarrow m\neq \pm 1\)

Khi đó:
\(y=\frac{1-m}{1-m^2}=\frac{1}{1+m}\)

\(x=1-my=1-\frac{m}{m+1}=\frac{1}{m+1}\)

Vậy HPT có nghiệm \((x,y)=(\frac{1}{m+1}, \frac{1}{m+1})\)

Để \(x,y>0\Leftrightarrow \frac{1}{m+1}>0\Leftrightarrow m>-1\)

Kết hợp những điều vừa tìm được suy ra $m>-1$ và $m\neq 1$ thì thỏa mãn.

23 tháng 11 2018

Đáp án: B

20 tháng 5 2018

a) Khi m=1 hpt có vô số nghiệm

Khi m=-1 hpt vô nghiệm

Khi \(m\ne\pm1\Rightarrow\left\{{}\begin{matrix}y=2m-mx\\x+m\left(2m-mx\right)=m+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2m-mx\\x=\dfrac{2m^2-m-1}{\left(m^2-1\right)}=\dfrac{2m+1}{m+1}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2m+1}{m+1}\\y=\dfrac{m}{m+1}\end{matrix}\right.\)

20 tháng 5 2018

b)\(\left\{{}\begin{matrix}x=\dfrac{2m+1}{m+1}\left(1\right)\\y=\dfrac{m}{m+1}\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\Rightarrow x\left(m+1\right)=2m+1\Leftrightarrow mx+x=2m+1\Leftrightarrow m=\dfrac{1-x}{x-2}\left(3\right)\)

Thay \(\left(3\right)\) vào \(\left(2\right):y=\dfrac{\dfrac{1-x}{x-2}}{\dfrac{1-x}{x-2}+1}=x-1\)

2 tháng 11 2016

Hệ pt : \(\begin{cases}x+my=m+1\\mx+y=3m-1\end{cases}\)

Xét pt đầu : \(x+my=m+1\Leftrightarrow x=m+1-my\) thay vào pt còn lại :

\(m\left(m+1-my\right)+y=3m-1\)

\(\Leftrightarrow y\left(1-m^2\right)=-m^2+2m-1\)

Nếu \(m=1\) thì pt có dạng 0.y = 0 => Vô số nghiệm.

Nếu m = -1 thì pt có dạng 0.x = -4 => vô nghiệm.

Xét với \(m\ne1\)\(m\ne-1\) thì pt có nghiệm \(y=\frac{-\left(m-1\right)^2}{\left(1-m\right)\left(1+m\right)}=\frac{m-1}{m+1}\)

\(\Rightarrow x=m+1-m\left(\frac{m-1}{m+1}\right)=m+1-\frac{m^2-m}{m+1}=\frac{m^2+2m+1-m^2+m}{m+1}=\frac{3m+1}{m+1}\)

Xét \(xy=\frac{\left(m-1\right)\left(3m+1\right)}{\left(m+1\right)^2}=\frac{3m^2-2m-1}{\left(m+1\right)^2}\)

Đặt \(t=m+1\) thì \(m=t-1\) thay vào biểu thức trên được

\(\frac{3\left(t-1\right)^2-2\left(t-1\right)-1}{t^2}=\frac{3t^2-8t+4}{t^2}=\frac{4}{t^2}-\frac{8}{t}+3\)

Lại đặt \(a=\frac{1}{t}\) thì : \(4a^2-8a+3=4\left(a-1\right)^2-1\ge-1\)

Suy ra \(xy\ge-1\) . Dấu đẳng thức xảy ra khi \(a=1\Leftrightarrow t=1\Leftrightarrow m=0\)

Vậy với m = 0 thì xy đạt giá trị nhỏ nhất bằng -1

2 tháng 11 2016

cam on

 

18 tháng 12 2020

Viết lại hệ \(\left\{{}\begin{matrix}2x+y=5\\-x+2y=a+5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x+y=5\\-2x+4y=2a+10\end{matrix}\right.\)

\(\Rightarrow5y=2a+15\Leftrightarrow y=\dfrac{2a+15}{5}\)

\(\Leftrightarrow x=2y-a-5=\dfrac{5-a}{5}\)

\(xy=\dfrac{5-a}{5}.\dfrac{2a+15}{5}=\dfrac{-2a^2-5a+75}{25}=\dfrac{-\left(a+\dfrac{5}{4}\right)^2+\dfrac{625}{8}}{25}\le\dfrac{25}{8}\)

\(max=\dfrac{25}{8}\Leftrightarrow a=-\dfrac{5}{4}\)