Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
• PT có nghiệm duy nhất \( \Leftrightarrow \dfrac{1}{m} \ne \dfrac{-2}{1} \Leftrightarrow m \ne \dfrac{-1}{2}\)
• PT vô nghiệm \(\Leftrightarrow \dfrac{1}{m} =\dfrac{-2}{1} \ne \dfrac{1}{2} \Leftrightarrow m=\dfrac{-1}{2}\)
• PT có vô số nghiệm \(\Leftrightarrow \dfrac{1}{m} = \dfrac{-2}{1} = \dfrac{1}{2} (\text{Vô lý})\)
Vậy....
a) Thay m=3 vào hệ phương trình, ta được:
\(\left\{{}\begin{matrix}x-3y=1\\x+y=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-4y=-8\\x+y=9\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=9-y\\y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=7\\y=2\end{matrix}\right.\)
Vậy: Khi m=3 thì hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=7\\y=2\end{matrix}\right.\)
b) Để hệ phương trình có nghiệm duy nhất thì \(\dfrac{1}{1}\ne\dfrac{-m}{1}\)
\(\Leftrightarrow-m\ne1\)
hay \(m\ne-1\)
Vậy: Để hệ phương trình có nghiệm duy nhất thì \(m\ne-1\)
c) Để hệ phương trình có vô số nghiệm thì \(\dfrac{1}{1}=\dfrac{-m}{1}=\dfrac{1}{m^2}\)
\(\Leftrightarrow\left\{{}\begin{matrix}-m=1\\m^2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=-1\\m\in\left\{1;-1\right\}\end{matrix}\right.\Leftrightarrow m=-1\)
Vậy: Để hệ phương trình có vô số nghiệm thì m=-1
a. Thay m = 1 ta được
\(\left\{{}\begin{matrix}x+2y=4\\2x-3y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+4y=8\\2x-3y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=1\\x=2\end{matrix}\right.\)
b, Để hpt có nghiệm duy nhất khi \(\dfrac{1}{2}\ne-\dfrac{2}{3}\)*luôn đúng*
\(\left\{{}\begin{matrix}2x+4y=2m+6\\2x-3y=m\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7y=m+6\\x=m+3-2y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{m+6}{7}\\x=m+3-2\dfrac{m+6}{7}\end{matrix}\right.\)
\(\Leftrightarrow x=m+3-\dfrac{2m+12}{7}=\dfrac{7m+21-2m-12}{7}=\dfrac{5m+9}{7}\)
Ta có : \(\dfrac{m+6}{7}+\dfrac{5m+9}{7}=-3\Rightarrow6m+15=-21\Leftrightarrow m=-6\)
\(\left\{{}\begin{matrix}x+2y=m+3\\2x-3y=m\end{matrix}\right.\)
\(a,Khi.m=1\Rightarrow\left\{{}\begin{matrix}x+2y=1+3\\2x-3y=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=4-2y\\2\left(4-2y\right)-3y=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=4-2y\\8-4y-3y=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=4-2y\\7y=7\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}y=1\\x=2\end{matrix}\right.\rightarrow\left(x,y\right)=\left(2,1\right)\)
\(b,\left\{{}\begin{matrix}x+2y=m+3\\2x-3y=m\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+4y=2m+6\left(1\right)\\2x-3y=m\left(2\right)\end{matrix}\right.\)
\(\left(1\right),\left(2\right)\Rightarrow\left\{{}\begin{matrix}7y=m+6\\x+2y=m+3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5m+9}{7}\\y=\dfrac{m+6}{7}\end{matrix}\right.\Rightarrow\) HPT có no duy nhất
\(\left(x,y\right)=\left(\dfrac{5m+9}{7};\dfrac{m+6}{7}\right)\)
\(x+y=-3\)
\(\dfrac{5m+9}{7}+\dfrac{m+6}{7}=-3\)
\(\Leftrightarrow5m+9+m+6=-21\)
\(\Leftrightarrow6m=-36\Rightarrow m=-6\)
Với m = -6 thì hệ pt có no duy nhất TM x + y = -3