K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2019

 hình thang ABCD 

=> AD=BC = 3cm ( định lí 1 )

AB//CD ( ABCD là hình thang cân )

=> góc B1 = góc D2 ( SLT )

     góc D1 = góc D2 ( gt )

=> góc B1 = góc D1 

=> tg ABD cân tại A

=> AD=AB= 3cm

tg DBC vuông ở B

hình thang cân ABCD 

=> góc D = góc C

   2 lần góc D1  = góc C

=> góc DBC = góc D1 + 2 lần góc D1 = 90 độ

                                       3 lần góc D1 = 90 độ

=>                                            góc D1 = 900 : 3 

                                                             = 300

=> góc C = 900 - góc D1 = 900 - 300 = 600

Gọi DA giao CB tại O

tg ODC có DB là pgiác 

BD vuông góc với Oc

=> tg ODC cân ở D

lại có góc C = 60 độ

=> tg OCD đều

=> CD = CO

mà tg ODC đều nên DB là đường phân giác đồng thời là đường trung tuyến

=> OB= BC

     CD= CO = OB+BC

mà OB = BC ( cmt )

=> CĐ= CƠ = 2CB = 2.3 = 6 ( cm )

Chu vi của hình thang cân ABCD là

AB+BC+AD+CD = 3+3+3+6= 15 (cm )

25 tháng 7 2019

Bạn ơi vẽ hình hộ mk đc ko ạ ?

4 tháng 9 2016

1) AE cắt BD  chứ k //, bn xem lại đầu bài

2) B = 360 - A-D -C = 360 -70-80-60 = 150o

b) mk không bit vẽ hình, bn dựa vào quan hệ các cạnh của tam giác rui lam

3) a) tam giác ABD cân nên góc ADB = ABD

mà ABD = BDC (so le) => ADB = BDC vây BD là phân giác góc D

b) tui nghi bn sai đề vi ABCD là hình thang, đương nhiên A+D =180, Tại sao gt cho lam j hay ng ta cho B+ D=180 mà bn chép sai? tui đoán gt cho B+D =180, bn xem lại, lam hình met lam

6 tháng 8 2018

Gọi giao điểm của AH và DC là I.

AF song song với DI (cùng vuông góc với AD) (1)

\(\Delta ADI=\Delta BAE\left(g.c.g\right)\Rightarrow DI=AE\) ( 2 cạnh tương ứng )

Mà \(AE=AF\left(gt\right)\Rightarrow DI=AF\) (2)

Từ (1) và (2) \(\Rightarrow AFID\)là hình bình hành.

Mà \(\widehat{FAD}=90^0\Rightarrow AFID\) là hình chữ nhật.

Từ đó: FBCI là hình chữ nhật nên IB = CF (t/c hình chữ nhật)

Gọi O là giao điểm của FC và BI \(\Rightarrow O\) là trung điểm của FC và BI

\(\Delta BHI\) vuông tại B có HO là đường trung tuyến ứng với cạnh CF nên

\(HO=\frac{1}{2}BI\Rightarrow HO=\frac{1}{2}CF\)

\(\Delta CHF\)có đường trung tuyến HO = 1/2 CF nên \(\Delta CHF\) vuông tại H.

Vậy \(\widehat{CHF}=90^0\)

Mình chỉ hướng dẫn bước thôi. Bạn tự trình bày nhé

Mong bạn hiểu lời giải. Chúc bạn học tốt.

7 tháng 8 2018

Cảm ơn bạn nhiều.