K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 1 2019

M I E A F P O D C B

a\()\)Gọi O là giao điểm hai đường chéo của hình chữ nhật ABCD . Dễ thấy : AM // DO

=> Tứ giác AMDB là hình thang

b\()\)Do AM // BD nên \(\widehat{OBA}=\widehat{MAE}(\text{hai giác đồng vị})\). Tam giác AOB cân ở O nên \(\widehat{OBA}=\widehat{OAB}\). Gọi I là giao điểm hai đường chéo của hình chữ nhật AEMF thì tam giác AIE cân ở I nên \(\widehat{IAE}=\widehat{IEA}\)

Từ các chứng minh trên suy ra : \(\widehat{FEA}=\widehat{OAB}\)do đó EF // AC \((1)\)

Mặt khác IP là đường trung bình của tam giác MAC nên IP // AC \((2)\)

Từ 1 và 2 => 3 điểm E,F,P thẳng hàng

c\()\)\(\Delta MAF~\Delta DBA(g-g)\Rightarrow\frac{MF}{FA}=\frac{AD}{AB}(\text{không đổi})\)

Bạn tham khảo nhé Bùi Quang Sang

Chúc bạn học tốt ~

2 tháng 6 2018

A B C D O E F I K P O'

Gọi giao điểm của AC và BD là O; giao điểm của KI và AF là O'. Tia FI cắt AC tại điểm P.

Xét tứ giác AKFI: FI//AK; KF//AI => Tứ giác AKFI là hình bình hành.

Do KI cắt AF tại O' => O' là trung điểm của AF.

Xét \(\Delta\)AFC: O' là trung điểm của AF; E là trung điểm của FC

=> O'E là đường trung bình của \(\Delta\)AFC => O'E//AC và O'E=1/2.AC

Ta thấy tứ giác ABCD là hình bình hành; AC giao BD tại O => OA=OC=1/2.AC

Do đó: O'E=OA. Mà O'E//OA (O'E//AC) nên tứ giác AO'EO là hình bình hành.

=> AO' // OE hay AF//BD => ^KAF=^ADB (Đồng vị)

Xét \(\Delta\)AKF và \(\Delta\)DAB: ^KAF=^ADB; ^AKF=^DAB (Vì KF//AB)

=> \(\Delta\)AKF ~ \(\Delta\)DAB (g.g) => \(\frac{AK}{DA}=\frac{KF}{AB}\).

Lại có KF=AI và AB=DC => \(\frac{AK}{AD}=\frac{AI}{DC}\)=> \(\Delta\)KAI ~ \(\Delta\)ADC (c.g.c)

=> ^AIK=^DCA. Mà ^DCA=^BAC nên ^AIK=^BAC => IK // AC (*)

Lại thấy: FI//AK => IP//AK; KI // AC (cmt) => KI//AP.

Từ đó suy ra: Tứ giác APIK là hình bình hành => IP=AK. Mà FI=AK.

=> FI=IP => I là trung điểm của FP.

Xét \(\Delta\)PFC: I là trung điểm FP; E là trung điểm của FC => IE//PC hay IE//AC (**)

Tư (*) và (**) => I;E;K là 3 điểm thẳng hàng (Tiên đề Ơ-clit) (đpcm).