\(\overrightarrow{IC}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1. a. Cho tam giác ABC. Có I,J,K,L xác định sao cho: 1. \(\overrightarrow{IA}\) - \(\overrightarrow{IB}\) +3\(\overrightarrow{IC}\) =\(\overrightarrow{0}\) 2. \(\overrightarrow{KA}\) +\(\overrightarrow{KB}\) -\(\overrightarrow{KC}\) =\(\overrightarrow{0}\) 3. 2\(\overrightarrow{JA}\) + \(\overrightarrow{JB}\) +\(\overrightarrow{JC}\) =\(\overrightarrow{0}\) 4. \(\overrightarrow{LA}\) +\(\overrightarrow{LB}\) +3\(\overrightarrow{LC}\)...
Đọc tiếp

Bài 1. a. Cho tam giác ABC. Có I,J,K,L xác định sao cho:

1. \(\overrightarrow{IA}\) - \(\overrightarrow{IB}\) +3\(\overrightarrow{IC}\) =\(\overrightarrow{0}\)

2. \(\overrightarrow{KA}\) +\(\overrightarrow{KB}\) -\(\overrightarrow{KC}\) =\(\overrightarrow{0}\)

3. 2\(\overrightarrow{JA}\) + \(\overrightarrow{JB}\) +\(\overrightarrow{JC}\) =\(\overrightarrow{0}\)

4. \(\overrightarrow{LA}\) +\(\overrightarrow{LB}\) +3\(\overrightarrow{LC}\) =\(\overrightarrow{0}\)

Biểu diễn \(\overrightarrow{AI}\), \(\overrightarrow{AJ}\), \(\overrightarrow{BK}\) ,\(\overrightarrow{BL}\) theo \(\overrightarrow{AB}\), \(\overrightarrow{AC}\)

b. Với giải thiết cho như câu a. CMR:

1. với mọi O ta có \(\overrightarrow{OI}\)= \(\frac{1}{3}\)\(\overrightarrow{OA}\) + \(\overrightarrow{OC}\) - \(\frac{1}{3}\)\(\overrightarrow{OC}\)

2. với mọi O ta có \(\overrightarrow{OK}\) = \(\overrightarrow{OA}\) + \(\overrightarrow{OB}\) -\(\overrightarrow{OC}\)

3. với mọi O ta có \(\overrightarrow{OJ}\)= \(\frac{1}{2}\)\(\overrightarrow{OA}\) +\(\frac{1}{4}\)\(\overrightarrow{OB}\) + \(\frac{1}{4}\)\(\overrightarrow{OC}\)

4. với mọi O ta có \(\overrightarrow{OL}\)= \(\frac{1}{5}\)\(\overrightarrow{OA}\) + \(\frac{1}{5}\)\(\overrightarrow{OB}\) + \(\frac{3}{5}\)\(\overrightarrow{OC}\)

Bài 2. Cho tam giác ABC. Gọi I,J xác định sao cho \(\overrightarrow{IC}\) = \(\frac{3}{2}\)\(\overrightarrow{BI}\) ; \(\overrightarrow{JB}\) = \(\frac{2}{5}\)\(\overrightarrow{JC}\)

a. Tính \(\overrightarrow{AI}\),\(\overrightarrow{AJ}\) theo \(\overrightarrow{a}\)= \(\overrightarrow{AB}\), \(\overrightarrow{b}\)= \(\overrightarrow{AC}\)

b. Tính \(\overrightarrow{IJ}\) theo \(\overrightarrow{a}\),\(\overrightarrow{b}\)

Bài 3. Cho tam giác ABC, gọi I là điểm sao cho 3\(\overrightarrow{IA}\)-\(\overrightarrow{IB}\)+2\(\overrightarrow{IC}\)=\(\overrightarrow{0}\). Xác định giao điểm của

a. AI và BC

b. IB và CA

c. IC và AB

0
9 tháng 10 2019

a) Ta có:

\(3\overrightarrow{IA}+2\overrightarrow{IC}=\overrightarrow{0}\)

\(\Leftrightarrow3\overrightarrow{IA}=-2\overrightarrow{IC}\)

\(\Leftrightarrow3\overrightarrow{IA}=-2\left(\overrightarrow{IA}-\overrightarrow{CA}\right)\)

\(\Leftrightarrow3\overrightarrow{IA}=-2\overrightarrow{IA}+2\overrightarrow{CA}\)

\(\Leftrightarrow3\overrightarrow{IA}+2\overrightarrow{IA}=2\overrightarrow{CA}\)

\(\Leftrightarrow5\overrightarrow{IA}=2\overrightarrow{CA}\)

\(\Leftrightarrow\overrightarrow{IA}=\frac{2}{5}\overrightarrow{CA}\)

21 tháng 9 2019

a/ \(\overrightarrow{IC}+2\overrightarrow{IB}=\overrightarrow{IC}+2\overrightarrow{IC}+2\overrightarrow{CB}=3\overrightarrow{IC}+2\overrightarrow{CB}\)

\(3\overrightarrow{IC}+2\overrightarrow{CB}=\overrightarrow{0}\Leftrightarrow\overrightarrow{IC}=\frac{2}{3}\overrightarrow{BC}\)

Vậy lấy I sao cho \(\left\{{}\begin{matrix}\overrightarrow{IC}\uparrow\uparrow\frac{2}{3}\overrightarrow{BC}\\IC=\frac{2}{3}BC\end{matrix}\right.\)

\(\overrightarrow{v}=\overrightarrow{IC}+\overrightarrow{CA}+\overrightarrow{IC}+\overrightarrow{CB}+\overrightarrow{IC}=\frac{2}{3}.3\overrightarrow{BC}+\overrightarrow{CA}+\overrightarrow{CB}\)

\(=2\overrightarrow{BC}+\overrightarrow{CA}+\overrightarrow{CB}=\overrightarrow{BC}+\overrightarrow{CA}=\overrightarrow{BA}\)

Câu 1 : Cho tam giác ABC có D,M lần lượt là trung điểm của AB,CD. Đẳng thức nào sau đây đúng? A. \(\overrightarrow{MA}\) +2. \(\overrightarrow{MB}\) + \(\overrightarrow{MC}\) = 0 B. \(\overrightarrow{MA}\) + \(\overrightarrow{MB}\) + \(\overrightarrow{MC}\) + \(\overrightarrow{MD}\) = 0 C. \(\overrightarrow{MC}\) + \(\overrightarrow{MA}\) + \(\overrightarrow{MB}\) = 0 D. \(\overrightarrow{MC}\) + \(\overrightarrow{MA}\) + 2. \(\overrightarrow{BM}\) = 0 Câu 2 : Cho...
Đọc tiếp

Câu 1 : Cho tam giác ABC có D,M lần lượt là trung điểm của AB,CD. Đẳng thức nào sau đây đúng?

A. \(\overrightarrow{MA}\) +2. \(\overrightarrow{MB}\) + \(\overrightarrow{MC}\) = 0

B. \(\overrightarrow{MA}\) + \(\overrightarrow{MB}\) + \(\overrightarrow{MC}\) + \(\overrightarrow{MD}\) = 0

C. \(\overrightarrow{MC}\) + \(\overrightarrow{MA}\) + \(\overrightarrow{MB}\) = 0

D. \(\overrightarrow{MC}\) + \(\overrightarrow{MA}\) + 2. \(\overrightarrow{BM}\) = 0

Câu 2 : Cho vec-tơ \(\overrightarrow{b}\) \(\ne\) \(\overrightarrow{0}\) , \(\overrightarrow{a}\) = -2 . \(\overrightarrow{b}\) , \(\overrightarrow{c}\) = \(\overrightarrow{a}\) + \(\overrightarrow{b}\) . Khẳng định nào sau đây sai ?

A. \(\overrightarrow{b}\) = \(\overrightarrow{c}\)

B. \(\overrightarrow{b}\)\(\overrightarrow{c}\) ngược hướng

C. \(\overrightarrow{b}\)\(\overrightarrow{c}\) cùng phương

D. \(\overrightarrow{b}\)\(\overrightarrow{c}\) đối nhau

Câu 3 : Cho hình vuông ABCD cạnh a\(\sqrt{2}\) . Tính S= \(\left|2\overrightarrow{AD}+\overrightarrow{DB}\right|\) ?

A. 2a

B. a

C. a\(\sqrt{3}\)

D. a\(\sqrt{2}\)

1

Câu 1: B
Câu 2: A

Câu 3: C

12 tháng 10 2017

Câu a

Thừa nhận định lý: trên đường thẳng BC với điểm M thuộc BC và điểm A bất kỳ thì \(\dfrac{MC}{BC}\).\(\overrightarrow{AB}\) + \(\dfrac{BM}{BC}\).\(\overrightarrow{AC} = \overrightarrow{AM}\)(tạm thời thì mình đang gấp, chưa chúng minh được) cái này là định lý ngoài nha, đừng vẽ lên hình

Gọi điểm A' là giao điểm của AI và BC

áp dụng định lý trên: \(\overrightarrow{IA'} = \dfrac{A'C}{BC}.\overrightarrow{IB} + \dfrac{A'B}{BC}.\overrightarrow{IC}\) (*)

sử dụng dịnh lý đường phân giác \(\dfrac{A'C}{AC}=\dfrac{A'B}{AB}\) và tỉ lệ này bằng với \(\dfrac{BC}{AC+AB}=\dfrac{BC}{b+c}\) (định lý về phân số \(\dfrac{a}{b}+\dfrac{c}{d}=\dfrac{a+c}{b+d}\) )

suy ra \(\dfrac{A'C}{BC}=\dfrac{AC}{b+c}=\dfrac{b}{b+c}\) (1)

\(\dfrac{A'B}{BC}=\dfrac{AB}{b+c}=\dfrac{c}{b+c}\) (2)

Thay (1), (2) vào (*)

ta có \(\overrightarrow{IA'} = \dfrac{b}{b+c}.\overrightarrow{IB} + \dfrac{c}{b+c}.\overrightarrow{IC}\) (3)

Mặt khác ta lại có \(\dfrac{\overrightarrow{IA'}}{\overrightarrow{IA}}\)=\(-\dfrac{IA'}{IA}\) (do 2 vecto đối nhau)

suy ra \(\overrightarrow{IA'}\)=\(-\dfrac{IA'}{IA}\).\(\overrightarrow{IA}\)=\(-\dfrac{A'C}{AC}\).\(\overrightarrow{IA}\)=\(-\dfrac{a}{b+c}\).\(\overrightarrow{IA}\) (sử dụng tiếp tục định lý đường phân giác nha bạn \(\dfrac{IA'}{IA}=\dfrac{A'C}{AC}\) ) (4)

Từ (3) và (4) ta suy ra \(-\dfrac{a}{b+c}\overrightarrow{IA'} = \dfrac{b}{b+c}.\overrightarrow{IB} + \dfrac{c}{b+c}.\overrightarrow{IC}\)

loại \(b+c\) trong cả 2 vế ta còn lại

\(-a.\overrightarrow{IA'} = b.\overrightarrow{IB} + c.\overrightarrow{IC}\) \(\leftrightarrow\)\(a.\overrightarrow{IA'} + b.\overrightarrow{IB} + c.\overrightarrow{IC}= \overrightarrow{0}\)

12 tháng 10 2017

hơi phức tạp một chút nhé

23 tháng 7 2019

Bài 1 và Bài 2 tương tự nhau nên mk sẽ chỉ CM bài 1 thôi nha

\(\overrightarrow{AB}=\overrightarrow{DC}\Rightarrow\overrightarrow{AB}+\overrightarrow{CD}=0\)

\(\Rightarrow\overrightarrow{AD}+\overrightarrow{DB}+\overrightarrow{CB}+\overrightarrow{BD}=0\)

\(\Leftrightarrow\overrightarrow{AD}+\overrightarrow{CB}=0\Leftrightarrow\overrightarrow{AD}=\overrightarrow{BC}\)

Bài 3:

Xét \(\Delta AIP\) theo quy tắc trung điểm có:

\(\overrightarrow{IC}=\frac{\overrightarrow{IA}+\overrightarrow{IP}}{2}\)

Làm tương tự vs các tam giác còn lại

\(\Rightarrow\overrightarrow{IB}=\frac{\overrightarrow{IN}+\overrightarrow{IC}}{2}\)

\(\Rightarrow\overrightarrow{IA}=\frac{\overrightarrow{IB}+\overrightarrow{IM}}{2}\)

Cộng vế vs vế

\(\Rightarrow\overrightarrow{IA}+\overrightarrow{IB}+\overrightarrow{IC}=\frac{\overrightarrow{IA}+\overrightarrow{IP}+\overrightarrow{IN}+\overrightarrow{IC}+\overrightarrow{IB}+\overrightarrow{IM}}{2}\)

\(\Leftrightarrow2\overrightarrow{IA}+2\overrightarrow{IB}+2\overrightarrow{IC}=\overrightarrow{IA}+\overrightarrow{IB}+\overrightarrow{IC}+\overrightarrow{IM}+\overrightarrow{IN}+\overrightarrow{IP}\)

\(\Leftrightarrow\overrightarrow{IA}+\overrightarrow{IB}+\overrightarrow{IC}=\overrightarrow{IM}+\overrightarrow{IN}+\overrightarrow{IP}\left(đpcm\right)\)

30 tháng 3 2017

Giải bài 7 trang 29 sgk Hình học 10 | Để học tốt Toán 10

\(\Rightarrow\)Vậy chọn đáp án C