\(\widehat{CBE}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 5 2017

a) Áp dụng hệ quả định lý thales:

\(\frac{MQ}{CD}+\frac{MP}{AB}=\frac{AM}{AC}+\frac{MC}{AC}=\frac{AC}{AC}=1\)

Áp dụng BĐT bunyakovsky:

\(\left(\frac{1}{AB^2}+\frac{1}{CD^2}\right)\left(MP^2+MQ^2\right)\ge\left(\frac{MP}{AB}+\frac{MQ}{CD}\right)^2=1\)

\(\Rightarrow\frac{1}{AB^2}+\frac{1}{CD^2}\ge\frac{1}{MP^2+MQ^2}\)

dấu = xảy ra khi \(\frac{MC}{AM}=\frac{CD^2}{AB^2}\)

b) chưa nghĩ :v

15 tháng 12 2017

D A B C N H K M

15 tháng 12 2017

Kẻ\(AK\perp AM\left(K\in OC\right)\)

\(AH\perp DC\left(H\in DC\right)\)

Áp dụng hệ thức giữa cạnh và đường cao và tam giác vuông AKN , đường cao AH , ta có

\(\dfrac{1}{AK^2}+\dfrac{1}{AN^2}=\dfrac{1}{AH^2}\left(1\right)\)

Xét \(\Delta AMB\)\(\Delta ADK\)có:

\(\left\{{}\begin{matrix}AD=AB\\\widehat{B}=\widehat{D}\\\widehat{DAK}=\widehat{MAB}\end{matrix}\right.\)

=> \(\Delta AMB=\Delta AKD\)

=> AM=AK ( 2 cạnh tương ứng)(2)

Áp dụng định lý py-ta-go , ta có :

\(HD^2+AH^2=AD^2\)

=>\(AH^2=AD^2-HD^2\)(3)

\(\Delta ADH\perp H\)có :\(\widehat{ADH}+\widehat{DAH}=90^o\)

=> \(\widehat{ADH}=90^o-60^o\)(Vì ABCD là h.thoi có góc DAB=120 độ => góc DAH=60 độ)

=>\(\widehat{ADH}=30^o\)

=>\(DH=\dfrac{1}{2}AD\)(4)

Thay (4) vào (3) , ta có : \(AH^2=AD^2-\left(\dfrac{1}{2}.AD\right)^2\)

=\(\dfrac{3}{4}.AD^2\)

=\(\dfrac{3}{4}.AB^2\)(vì AB=AD)

Thay (2) vào (5) , ta có :

\(\dfrac{1}{AM^2}+\dfrac{1}{AN^2}=\dfrac{4}{3AB^2}\)

<=> \(\dfrac{3}{AM^2}+\dfrac{3}{AN^2}=\dfrac{4}{AB^2}\)

2 tháng 9 2018

A B C D I H 30 0

a) Ta thấy điểm C nằm trên nửa đường tròn đường kính AB => ^ACB = 900

Hay ^ACI = 900 . Xét \(\Delta\)AIC có: ^ACI = 900 ; ^CAI (=^CAD) = 300

=> IA= 2.IC => \(\frac{IC}{IA}=\frac{1}{2}\)

Xét \(\Delta\)CID và \(\Delta\)AIB có: ^CID = ^AIB (Đối đỉnh); ^ICD = ^IAB (2 góc nội tiếp chắn cung BD)

=> \(\Delta\)CID ~ \(\Delta\)AIB (g.g) => \(\frac{CD}{AB}=\frac{IC}{IA}=\frac{1}{2}\).

Vậy \(\frac{CD}{AB}=\frac{1}{2}.\)

b) Xét tứ giác ACIH: ^ACI = 900; ^AHI = 900 => Tứ giác ACIH nội tiếp đường tròn

=> ^IAH = ^ICH hay ^BAD = ^ICH. Mà ^BAD = ^BCD (2 góc nội tiếp chắn cung BD)

=> ^ICH = ^BCD = ^ICD => CI là phân giác ^DCH.

Chứng minh tương tự; ta có: DI là phân giác ^CDH

Xét \(\Delta\)CDH có: CI là phân giác ^DCH; DI là phân giác ^CDH

=> I là giao điểm của 3 đường phân giác của \(\Delta\)CDH (đpcm).

28 tháng 1 2019

A B C D E I S O

1) Xét đường tròn (O) đường kính CD => ^CED = 900 => ^DEB = 900

Xét tứ giác ADEB có: ^BAD + ^ DEB = 900 + 900 = 1800 => Tứ giác ADEB nội tiếp 

Hay 4 điểm A,D,E,B cùng thuộc một đường tròn (đpcm).

2) Tứ giác ADEB nội tiếp => ^DEA = ^DBA. Tương tự: ^DEI = ^DCI

Ta có: Tứ giác ABCI nội tiếp của đường tròn đường kính BC (Do ^BAC = ^BIC = 900)

=> ^DBA = ^DCI. Từ đó, suy ra: ^DEA = ^DEI => ED là phân giác ^AEI (đpcm).

3) Dễ thấy DE, CI, BA là 3 đường cao của \(\Delta\)BCD nên AB,CI,DE đồng quy (tại trực tâm \(\Delta\)BCD) (đpcm).

4) Xét \(\Delta\)ABC có vuông tại A: \(\tan\widehat{ABC}=\frac{AC}{AB}=\sqrt{2}\Rightarrow AB=\frac{AC}{\sqrt{2}}\)(theo gt)

Để EA là tiếp tuyến của (CD) thì ^AED = ^DCE. Hay ^ABD = ^ACB (Vì ^AED=^ABD)

<=> \(\Delta\)ADB ~ \(\Delta\)ABC (g,g) <=> \(AB^2=AD.AC\) <=> \(\left(\frac{AC}{\sqrt{2}}\right)^2=AD.AC\)

<=> \(AD=\frac{AC}{2}\)<=> D là trung điểm cạnh AC.

Vậy D là trung điểm AC thì EA là tiếp tuyến của (CD).

AH
Akai Haruma
Giáo viên
27 tháng 1 2019

Lời giải:

Do $ABCD$ là hình thoi nên:

\(\widehat{D_1}=\widehat{B_1}=180^0-\widehat{BAD}=30^0\) (2 góc trong cùng phía )

\(\widehat{F_1}=\widehat{BAE}=30^0\) (so le trong với \(AB\parallel CD\))

Do đó: \(\widehat{D_1}=\widehat{F_1}\Rightarrow \triangle ADF\) cân tại $A$, suy ra $AF=AD=a(1)$

Kẻ $AH$ vuông góc với $BC$

Ta có: \(\frac{AH}{AB}=\sin \widehat{ABH}=\sin \widehat{B_1}=\sin 30^0=\frac{1}{2}\)

\(\Rightarrow AH=\frac{AB}{2}=\frac{a}{2}\)

\(\widehat{AEH}=\widehat{EAB}+\widehat{B_1}=30^0+30^0=60^0\)

\(\Rightarrow \frac{AH}{AE}=\sin \widehat{AEH}=\sin 60^0=\frac{\sqrt{3}}{2}\)

\(\Rightarrow AE=\frac{2AH}{\sqrt{3}}=\frac{a}{\sqrt{3}}(2)\)

Từ (1);(2) suy ra \(\frac{1}{AE^2}+\frac{1}{AF^2}=\frac{1}{\frac{a^2}{3}}+\frac{1}{a^2}=\frac{4}{a^2}\) (đpcm)

AH
Akai Haruma
Giáo viên
27 tháng 1 2019

Hình vẽ:

Hệ thức lượng trong tam giác vuông