K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b: Xét ΔADM vuông tại D có DH là đường cao ứng với cạnh huyền AM

nên \(AH\cdot AM=AD^2\left(1\right)\)

Xét ΔADB vuông tại A có AH là đường cao ứng với cạnh huyền DB

nên \(DH\cdot DB=AD^2\left(2\right)\)

Từ (1) và (2) suy ra \(DH\cdot DB=AH\cdot AM\)

20 tháng 10 2021

a) theo đinh lí Py ta go ta có: BD2 = AB2 + AD2  = 6 + 82 => BD = 10

có SABC = 1/2 AD. AB = 1/2 8.6= 24

=> SABC = 1/2 AH. DB => AH = SABC *10 * 1/2 = 4.8

Do mình tính nhẩm nên có sai sót chỗ đáp số nào đó bạn thông cảm cho mình nha

20 tháng 10 2021

Trả lời giúp mình với mk cần gấp !!!!

19 tháng 8 2023

Để giải bài toán này, chúng ta có thể sử dụng định lí Euclid và các quy tắc về góc và đường thẳng. Hãy xem xét từng câu hỏi một.

a) Để tính AC, ta có thể sử dụng định lí Pythagoras trong tam giác ABC. Với AB = 4cm và BC = 3cm, ta có AC = √(AB^2 + BC^2). Tương tự, để tính AH và BH, ta có AH = AB và BH = BC.

b) Để chứng minh rằng BH.BE = CH.AC, ta có thể sử dụng các quy tắc về tỉ lệ đồng dạng của tam giác. Bằng cách chứng minh rằng tam giác AHB và tam giác CHB đồng dạng, ta có thể suy ra công thức trên.

c) Để chứng minh góc ADH = góc ACK, ta có thể sử dụng các quy tắc về góc đồng quy và góc nội tiếp. Bằng cách chứng minh rằng góc ADH và góc ACK đồng quy với góc nội tiếp tại cùng một cung, ta có thể suy ra bằng chứng cần thiết

19 tháng 8 2023

hảo trả lời 
cần bài làm chứ đâu cần gợi ý

16 tháng 7 2021

a) Xét tam giác BHI và tam giác ABI:

BHI = ABI (=90o)

HBI = BAI ( cùng phụ ABH)

=> Tg BHI ~ tg ABI (g.g)

=> \(\frac{IH}{BI}\)\(\frac{BI}{IA}\) 

=> BI2 = IH.IA (1)

Xét tam giác BCD có:

IH // CD (cùng vuông góc BC)

H trđ BC ( tam giác ABC cân tại Acó AH là dg cao => AH là dg trung tuyến)

=> I trđ BD => BI = ID (2)

Từ (1), (2) => ID= IH.IA (dpcm)

b) Ta có: DCK = CBK ( cùng phụ BCK)

Mà BAH = CBK (cmt)

=> DCK = BAH

Xét tg CKD và tg ABI:

DCK = BAI (cmt)

CKD = ABI ( =90o)

=> Tg CKD ~ tg ABI ( g.g)

"Còn NC = NK mình nhìn mắt thường còn chưa thấy nó bằng nhau lun á"

16 tháng 7 2021

a) Tg ABC cân tại A có AH vuông BC (gt)

=> BH=HC

- Tg BDC có :

BH=HC (cmt)

HI//CD (cùng vuông BC)

=> BI=ID (đường TB)

- Xét tg ABI vuông tại B, đường cao BH có :

IH.IA=BI2 (htl)

Mà BI=ID (cmt)

=> ID2=IH.IA

b) Xét tg CKD và ABI có :

\(\widehat{CKD}=\widehat{ABI}=90^o\)

\(\widehat{AIB}=\widehat{CDK}\)(AI//CD)

=> Tg CDK~ABI (g.g)

\(\Rightarrow\frac{CK}{AB}=\frac{KD}{BI}\)

=> CK.BI=KD.AB (1)

Có : CK//AB\(\Rightarrow\frac{NK}{AB}=\frac{DK}{DB}\left(Talet\right)\)

=> NK.DB=AB.DK (2)

-Từ (1) và (2) => CK.BI=NK.DB=NE.2BI

=> CK=2NK

\(\Rightarrow NK=NC=\frac{CK}{2}\left(đccm\right)\)

#H

27 tháng 10 2021

b: Xét ΔBAD vuông tại A có AH là đường cao

nên \(DH\cdot DB=AD^2\left(1\right)\)

Xét ΔADM vuông tại D có DH là đường cao

nên \(AH\cdot AM=AD^2\left(2\right)\)

Từ (1) và (2) suy ra \(DH\cdot DB=AH\cdot AM\)

AH
Akai Haruma
Giáo viên
21 tháng 9 2020

Lời giải:

a) Vì $ABCD$ là hình chữ nhật nên $AD=BC=15$

Áp dụng hệ thức lượng tam giác vuông đối với tam giác vuông $ABD$, đường cao $AH$ ta có:

$\frac{1}{AH^2}=\frac{1}{AD^2}+\frac{1}{AB^2}=\frac{1}{8^2}+\frac{1}{15^2}$

$\Rightarrow AH=\frac{120}{17}$ (cm)

Áp dụng định lý Pitago cho tam giác vuông $HAB$:

$HB=\sqrt{AB^2-AH^2}=\sqrt{8^2-(\frac{120}{17})^2}=\frac{64}{17}$ (cm)

$HC=\sqrt{AD^2-AH^2}=\sqrt{15^2-(\frac{120}{17})^2}=\frac{225}{17}$ (cm)

b)

Xét tam giác $DHK$ và $IHB$ có:

$\widehat{DHK}=\widehat{IHB}=90^0$

$\widehat{HDK}=\widehat{HIB}(=90^0-\widehat{HBI})$

$\Rightarrow \triangle DHK\sim \triangle IHB$ (g.g)

$\Rightarrow \frac{DH}{IH}=\frac{HK}{HB}$

$\Leftrightarrow HI.HK=HB.HD$

Mà $HB.HD=AH^2$ theo hệ thức lượng tam giác vuông

$\Rightarrow HI.HK=AH^2$ (đpcm)

AH
Akai Haruma
Giáo viên
21 tháng 9 2020

Hình vẽ:

Hệ thức lượng trong tam giác vuông

31 tháng 10 2023

a: ΔABD vuông tại A

=>\(BD^2=AB^2+AD^2\)

=>\(BD^2=9^2+12^2=225\)

=>BD=15(cm)

Xét ΔABD vuông tại A có AH là đường cao

nên \(AH\cdot BD=AB\cdot AD\)

=>\(AH\cdot15=12\cdot9=108\)

=>AH=108/15=7,2(cm)

XétΔABD vuông tại A có \(sinBDA=\dfrac{AB}{BD}=\dfrac{9}{15}=\dfrac{3}{5}\)

nên \(\widehat{BDA}\simeq37^0\)

b: Xét ΔAHB vuông tại H có HI là đường cao

nên \(AI\cdot AB=AH^2\left(1\right)\)

Xét ΔABD vuông tại A có AH là đường cao

nên \(AH^2=HD\cdot HB\left(2\right)\)

Từ (1) và (2) suy ra \(AI\cdot AB=HD\cdot HB\)

c: Xét ΔHDN vuông tại H và ΔHMB vuông tại H có

\(\widehat{HDN}=\widehat{HMB}\left(=90^0-\widehat{DBC}\right)\)

Do đó: ΔHDN đồng dạng với ΔHMB

=>HD/HM=HN/HB

=>\(HM\cdot HN=HD\cdot HB=HA^2\)

1 tháng 11 2023

c.ơn bn nhiều 

14 tháng 6 2021

A D B C 8 15 H I M N

a,Vì ABCD là hình chữ nhật => BC = AD = 15 cm 

Xét tam giác ABD vuông tại A, đường cao AH 

Áp dụng định lí Pytago cho tam giác ABD 

\(BD^2=AB^2+AD^2=64+225=289\Rightarrow BD=17\)cm 

* Áp dụng hệ thức : \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AD^2}\Rightarrow\frac{1}{AH^2}=\frac{1}{64}+\frac{1}{225}=\frac{225+64}{64.225}\)

\(\Leftrightarrow\frac{1}{AH^2}=\frac{289}{14400}\Leftrightarrow AH^2=\frac{14400}{289}\Leftrightarrow AH=\frac{120}{17}\)

14 tháng 6 2021

b, Xét tam giác AHB vuông tại H đường cao HI 

 \(AH^2=IA.AB\)( hệ thức lượng ) (1) 

Xét tam giác ABD vuông tại A đường cao AH 

\(AH^2=DH.BH\)( hệ thức lượng ) (2) 

Từ (1) ; (2) suy ra \(IA.AB=DH.BH\)( đpcm )