Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A E M B C H N S
Xét tam giác ABC có : \(BC=AB.\tan60^0=2a\sqrt{3}\Rightarrow S_{\Delta ABC}=2a^2\sqrt{3}\)
\(V_{S.ABCD}=\frac{1}{3}SA.S_{\Delta ABC}=\frac{1}{3}a\sqrt{3}.2a^2\sqrt{3}=2a^3\)
- Gọi N là trung điểm cạnh SA. Do SB//(CMN) nên d(SB. CM)=d(SB,(CMN))
=d(B,(CMN))
=d(A,(CMN))
- Kẻ \(AE\perp MC,E\in MC\) và kẻ \(AH\perp NE,H\in NE\), ta chứng minh được \(AH\perp\left(CMN\right)\Rightarrow d\left(A,\left(CMN\right)\right)=AH\)
Tính \(AE=\frac{2S_{\Delta AMC}}{MC}\) trong đó :
\(S_{\Delta AMC}=\frac{1}{2}AM.AC.\sin\widehat{CAM}=\frac{1}{2}a.4a\frac{\sqrt{3}}{2}=a^2\sqrt{3};MC=a\sqrt{13}\)
\(\Rightarrow AE=\frac{2a\sqrt{3}}{\sqrt{13}}\)
Tính được \(AH=\frac{2a\sqrt{3}}{\sqrt{29}}\Rightarrow d\left(A,\left(CMN\right)\right)=\frac{2a\sqrt{3}}{\sqrt{29}}\Rightarrow d\left(SB,CM\right)=\frac{2a\sqrt{3}}{\sqrt{29}}\)
Dễ dàng chứng minh MN // BC
Xét \(\Delta SBC\) có MN // BC và MN đi qua trọng tâm G
\(\Rightarrow\) \(\begin{cases}SM=\frac{2}{3}SB\\SN=\frac{2}{3}SC\end{cases}\)
Sử dụng công thức tỉ lệ thể tích đố với 2 khối tứ diện S.AMN và S.ABC ta có
\(\frac{V_{S.AMN}}{V_{S.ABC}}=\frac{SA}{SA}.\frac{SM}{SB}.\frac{SN}{SC}=1.\frac{2}{3}.\frac{2}{3}=\frac{4}{9}\\ \Rightarrow V_{S.AMN}=\frac{4}{9}.V_{S.ABC}\)
Tính được \(V_{S.ABC}=\frac{1}{6}SA.AB.BC=\frac{a^3}{6}\)
\(\Rightarrow V_{S.AMN}=\frac{2a^3}{27}\)
Gọi h và h’ lần lượt là chiều cao hạ từ A, A’ đến mặt phẳng (SBC).
Gọi S1 và S2 theo thứ tự là diện tích các tam giác SBC và SB’C’.
Khi đó ta có h′h=SA′SAh′h=SA′SA và 12B′SC′.SB′.SC′12BSC.SB.SC=SB′SB.SC′SC12B′SC′.SB′.SC′12BSC.SB.SC=SB′SB.SC′SC
Suy ra VS.A′B′C′VS.ABC=VA′.SB′C′VA.SBC=13h′S213hS1=SA′SA⋅SB′SB⋅SC′SCVS.A′B′C′VS.ABC=VA′.SB′C′VA.SBC=13h′S213hS1=SA′SA⋅SB′SB⋅SC′SC
Đó là điều phải chứng minh.
α M D C B A O a√3 S
a, \(V_{SACD}=\dfrac{1}{3}S_{ACD}\cdot SA\)
\(S_{ACD}=\dfrac{1}{2}a^2\cdot sin90^o=\dfrac{a^2}{2}\)
\(\Rightarrow V_{SACD}=\dfrac{1}{3}\cdot\dfrac{a^2}{2}\cdot a\sqrt{3}=\dfrac{a^3\sqrt{3}}{6}\)
b, Từ O dựng OM // SB
\(\Rightarrow\left(\widehat{SB,AC}\right)=\left(\widehat{OM,OC}\right)\)
Gọi \(\widehat{COM}=\alpha\)
Xét \(\Delta\) \(OMC\) : \(OC=\dfrac{1}{2}AC=\dfrac{a\sqrt{2}}{2}\)
\(OM=\dfrac{1}{2}SB\)
Xét \(\Delta\) \(SAB\) có : \(SB^2=SA^2+AB^2=3a^2+a^2=4a^2\)
\(\rightarrow SB=2a\rightarrow OM=a\)
CM là đường trung tuyến của \(\Delta\) \(SCD\) :
\(CM^2=\dfrac{SC^2+CD^2}{2}=\dfrac{SD^2}{4}\)
\(SC^2=5a^2\) ; \(SD^2=4a^2\)
\(\Rightarrow CM=\dfrac{5a^2+a^2}{2}-\dfrac{4a^2}{4}=2a^2\)
\(\Rightarrow CM=a\sqrt{2}\)
Xét \(\Delta\) OMC có :
\(CM^2=OM^2+OC^2-2OM\cdot OC\cdot cos\alpha\)
\(\Leftrightarrow2a^2=a^2+\dfrac{a^2}{2}-2a\cdot\dfrac{a\sqrt{2}}{2}\cdot cos\alpha\)
\(\Rightarrow cos\alpha=\dfrac{-1}{2\sqrt{2}}< 0\)
\(\Rightarrow cos\left(\widehat{OC,OM}\right)=\dfrac{1}{2\sqrt{2}}=cos\left(\widehat{SB,AC}\right)\)
A B C S H
Gọi H là trung điểm của BC=> HA=HB=HC
Kết hợp với giả thiết
SA=SB=SC=>\(SH\perp BC,\Delta SHA=\Delta SHB=SHC\)
\(\begin{cases}SH\perp\left(ABC\right)\\\widehat{SAH}=60^0\end{cases}\)
Tam giác ABC là tam giác vuông cân tại A
\(AC=AB=a\sqrt{2}\Rightarrow BC=2a\Rightarrow AH=a\)
Tam giác SHA vuông :
\(SH=AH.\tan60^0=a\sqrt{3}\Rightarrow V_{S.ABC}=\frac{1}{3}.\frac{1}{2}AB.AC.SH=\frac{\sqrt{3}a^3}{3}\)
Gọi O; R lần lượt là tâm và bán kính của mặt cầu ngoại tiếp chóp S.ABC. Suy ra P thuộc đường thẳng SH, nên O thuộc mặt phẳng (SBC). Do đó R là bán kính đường tròn ngoại tiếp tam giác SBC.
Xét tam giác SHA ta có : \(SA=\frac{SH}{\sin60^0}=2a\Rightarrow\Delta SBC\) là tam giác đều có độ dài cạnh bằng 2a.
Suy ra \(R=\frac{2a}{2\sin60^0}=\frac{2a\sqrt{3}}{3}\)
Lời giải:
Gọi $H$ là chân đường cao kẻ từ $S$ xuống mặt phẳng $(ABC)$
Ta có \(\left\{\begin{matrix} SH\perp AB\\ SA\perp AB\end{matrix}\right.\Rightarrow AB\perp (SHA)\rightarrow AB\perp HA\)
Tương tự \(BC\perp HC\). Kết hợp với \(ABC\) vuông cân tại $B$ suy ra \(ABCH\) là hình vuông
Có \(AH\parallel (SBC)\Rightarrow d(A,(SBC))=d(H,(SBC))\)
Kẻ \(HT\perp SC\). Có \(\left\{\begin{matrix} SH\perp BC\\ HC\perp BC\end{matrix}\right.\Rightarrow BC\perp (SHC)\Rightarrow BC\perp HT\)
Do đó \(HT\perp (SBC)\Rightarrow d(H,(SBC))=HT=\sqrt{\frac{SH^2.HC^2}{SH^2+HC^2}}=\sqrt{\frac{SH^2.AB^2}{SH^2+AB^2}}=\sqrt{2}\Rightarrow SH=\sqrt{6}a\)
Từ trung điểm $O$ của $AC$ dựng trục vuông góc với mặt phẳng $(ABC)$. Trên trục đó ta lấy điểm $I$ là tâm mặt cầu ngoại tiếp.
\(IS^2=IA^2=IH^2\Leftrightarrow (\overrightarrow{IO}+\overrightarrow{OH}+\overrightarrow{HS})^2=IO^2+OH^2\)
\(\Leftrightarrow HS^2+2\overrightarrow{IO}.\overrightarrow{HS}=0\)
Do \(\overrightarrow {SH}\parallel \overrightarrow {IO}\Rightarrow \overrightarrow {IO}=k\overrightarrow{SH}\). Thay vào PT trên có $k=\frac{1}{2}$
\(\Rightarrow IO=\frac{\sqrt{6}a}{2}\Rightarrow IA=\sqrt{IO^2+AO^2}=\sqrt{3}a\)
\(\Rightarrow S_{\text{mặt cầu}}=4\pi R^2=12a^2\pi\)
\(V_{SABC}=\dfrac{1}{3}SA.\dfrac{1}{2}AB.AC=\dfrac{a^3\sqrt{3}}{6}\)
\(S_{SAM}=\dfrac{1}{2}S_{SAB}\Rightarrow V_{SAMC}=\dfrac{1}{2}V_{SABC}=\dfrac{a^3\sqrt{3}}{12}\)
Tam giác SAB vuông tại A nên AM là trung tuyến ứng với cạnh huyền
\(\Rightarrow AM=\dfrac{1}{2}SB=\dfrac{1}{2}\sqrt{SA^2+AB^2}=a\)
\(\left\{{}\begin{matrix}SA\perp\left(ABC\right)\Rightarrow SA\perp AC\\AC\perp AB\end{matrix}\right.\) \(\Rightarrow AC\perp\left(SAB\right)\Rightarrow AC\perp AM\)
Hay tam giác ACM vuông tại M
\(\Rightarrow S_{AMC}=\dfrac{1}{2}AM.AC=\dfrac{a^2}{2}\)
\(\Rightarrow d\left(S;\left(AMC\right)\right)=\dfrac{3V_{SAMC}}{S_{AMC}}=\dfrac{a\sqrt{3}}{2}\)