K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 10 2015

a A B d d' D C O

a)

Xét ΔABD và ΔAED có:

AB=AE (giả thiết)

Góc BAD= góc EAD (do AD là phân giác góc A)

AD chung

⇒⇒ ΔABD=ΔAED (c-g-c)

b) Ta có ΔABD=ΔAED

⇒⇒ BD=DE và góc ABD= góc AED

⇒⇒ Góc FBD= góc CED (hai góc kề bù với hai góc bằng nhau)

Xét ΔDBF và ΔDEC có:

BD=DE

Góc DBF= góc DEC

Góc BDF= góc EDC ( đối đỉnh )

⇒⇒ ΔDBF=ΔDEC (g-c-g)

a: Xét ΔIDC và ΔIEC có

góc IDC=góc IEC

IC chung

góc C1=góc C2

=>ΔIDC=ΔIEC

=>DC=EC

=>ΔDCE cân tại C

b: MN//AC

=>góc DNM=góc DEC=góc NDM

=>ΔDMN cân tại M

=>MD=MN

=>MN=AE

Xét tứ giác AEMN có

AE//MN

AE=MN

=>AEMN là hbh

=>AM cắt EN tại trung điểm của mỗi đường

=>K là trung điểm của AM

 

14 tháng 4 2017

\(a. \)Xét  \(\Delta ABC\)vuông tại A theo địnhlý Py - ta - go, ta có:              \(BC^2=AC^2+AB^2\)
                                                                                                                \(\Rightarrow\)\(AB^2=BC^2-AC^2\)
                                                                                                                \(\Rightarrow\) \(AB^2=10^2-6^2=64\)
                                                                                                                 \(\Rightarrow\) \(AB=\sqrt{64}=8\)(cm)
Vì  CM là dường trung tuyến \(\Rightarrow\)BM = MA     \(\Rightarrow\)\(BM=MA=\frac{AB}{2}=\frac{8}{2}=4\)   (cm)

\(b.\) Xét \(\Delta CAM\) và \(\Delta DBM\)có:      \(MC=MD\)                          ( gt )
                                                                              \(\widehat{AMC}=\widehat{DMB}\)                  ( đối đỉnh )
                                                                               \(AM=BM\)                          ( CM là dường trung tuyến)

               Do đó \(\Delta CAM=\Delta DBM\)( c.g.c)

\(c.\)Xét \(\Delta DBC\)theo Bất đẳng thức tam giác, ta có:  \(DB+BC>DC\)
                 mà \(CM=MD\)nên  \(DC=2CM\)
                         \(BD=AC\)    ví    \(\Delta CAM=\Delta DBM\)
              \(\Rightarrow\)đpcm

                                                                                                     
           

a) Xét ΔABE vuông tại A và ΔACD vuông tại A có 

AB=AC(ΔABC vuông cân tại A)

AE=AD(gt)

Do đó: ΔABE=ΔACD(cạnh huyền-cạnh góc vuông)

Suy ra: BE=CD(Hai cạnh tương ứng)

8 tháng 11 2016

O A B C 1 2 D 1 1

a) Xét \(\Delta AOC\)\(\Delta BOD\) có :

AO = OB ( gt )

\(\widehat{O_1}=\widehat{O_2}\) ( đối đỉnh )

OC = OD ( gt )

=> \(\Delta AOC\) = \(\Delta BOD\) ( c.g.c)

=> AC = BD ( 2 cạnh tương ứng )

b)

=> \(\widehat{C_1}=\widehat{D_1}\) ( hai góc tương ứng )

=> AC // BD

c)

A B C D O M N N'

Kẻ MO cắt BD tại N'

Ta c/m được \(\Delta MOC=\Delta N'OD\left(g.c.g\right)\)(1)

=> N'D = MC

=> N'B = MA

=> N' trùng M

Mặt khác (1) => MO = ON

=> O là tung điểm của MN

8 tháng 11 2016

Ta có hình vẽ

a/ Xét tam giác AOC và tam giác BOD có

-góc AOC = góc BOD (đối đỉnh)

-AO=OB (vì O là trung điểm của AB)

-CO=OD (Vì O là trung điểm của CD)

Vậy tam giác AOC = tam giác BOD

=> AC = BD (2 cạnh tương ứng)

b/ Xét tam giác AOD và tam giác BOC có

-góc AOD = góc BOC (đối đỉnh)

-AO=OB (vì O là trung điểm của AB)

-CO=OD (Vì O là trung điểm của CD)

Vậy tam giác AOD = tam giác BOC

=> góc DAB = góc ABC

Mà DAB; ABC : so le trong

=> AD//BC

c/ Vì tam giác AOC = tam giác BOD

=> góc OAC = góc OBD (2 góc tương ứng)

Xét tam giác AOM và BON có:

-góc OAC = góc OBD

-AM = BN (GT)

-AO=OB (O là trung điểm của AB)

Vậy tam giác AOM = tam giác BON

=> MO = ON (2 cạnh tương ứng)

Vậy O là trung điểm của MN (đpcm)