K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 9 2017

   có E,F,G,H theo thứ tự là trung điểm của các cạnh AB, BC, CD, DA 
suy ra EF là đường trung bình của tam giác ABC nên EF//=1/2AC (1) 
GH là đường trung bình của tam giác ADC nên GH//=1/2AC (2) 
Từ (1) và (2) suy ra EF//=GH nên EFGH là hình bình hành 
Vì có hai cạnh đối song song và bằng nhau 

Bài 2) 
a) AK=1/2AB; CI=1/2CD 
mà AB//=CD nên AK//=CI suy ra 
AKCI là hình bình hành 
do đó AI//CK 
b) Xét tam giác CDN 
có I là trung điểm CD mà IM//CN 
nên M là trung điểm DN hay DM=MN (3) 
(Theo định lý đường thẳng đi qua một cạnh của tam giác và song song với cạnh thứ hai thì đi qua trung điểm cạnh thứ ba) 
Tương tự xét tam giác ABM cũng có BN=MN (4) 
Từ (3) và (4) suy ra DM=MN=NB 

Bài 3) 
Câu a) làm ý như câu b) bài 2) 
bâu b) chứng minh giống ý a bài 2 ta được AECF là hình bình hành 
nên AF//CE => FM//EN (5) 
Tam giác ABM=tam giác CDN (cgc) suy ra AM=CN 
mà EN=1/2AM (t/c đường trung bình của tam giác) 
FM=1/2 NC (t/c đường trung bình của tam giác) 
do đó EN=MF (6) 
từ (5) và (6) suy ra EMFN là hình bình hành. 
câuc) I và J lần lượt là trung điểm của BC và AD 
nên IJ đi qua trung điểm của EF (7) 
MN và EF là hai đường chéo của hình bình hành ENFM nên MN đi qua trung điểm của EF (8) 
Từ (7) và (8) suy ra 3 đường thẳng IJ, MN, EF đồng quy tại 1 điểm 
Bạn hỏi dài quá. lần sau mỗi lần hỏi thì chỉ nên ghi 1 câu thôi, người trả lời đỡ ngại 
và bạn nhanh chóng có được đáp án. 
Chúc bạn học giỏi. 

a: Xét ΔBAC có E,F lần lượt là trung điểm của BA,BC

=>EF là đường trung bình

=>EF//AC và EF=AC/2

Xét ΔDAC có 

H,G lần lượt là trung điểm của DA,DC

=>HG là đường trung bình

=>HG//AC và HG=AC/2

=>EF//HG và EF=HG

Xét ΔABD có

E,H lần lượt là trung điểm của AB,AD

=>EH là đường trung bình

=>EH=BD/2

=>EH=AC/2=EF

Xét tứ giác EHGF có

EF//GH

EF=GH

EH=EF

Do đó: EHGF là hình thoi

b: Xét ΔEHF có Q,M lần lượt là trung điểm của EH,EF

=>QM là đường trung bình

=>QM//HF và QM=HF/2

Xét ΔGHF có

P,N lần lượt là trung điểm của GH,GF

=>PN là đường trung bình

=>PN//HF và PN=HF/2

=>QM//PN và QM=PN

Xét ΔHEG có HQ/HE=HP/HQ=1/2

nên PQ//EG

=>PQ vuông góc HF

=>PQ vuông góc QM

Xét tứ giác MNPQ có

MQ//NP

MQ=NP

góc PQM=90 độ

Do đó: MNPQ là hình chữ nhật

12 tháng 10 2021

a: Xét ΔABD có 

E là trung điểm của BA

H là trung điểm của AD

Do đó: EH là đường trung bình của ΔABD

Suy ra: EH//BD và \(EH=\dfrac{BD}{2}\left(1\right)\)

Xét ΔBCD có 

F là trung điểm của BC

G là trung điểm của CD

Do đó: FG là đường trung bình của ΔBCD

Suy ra: FG//BD và \(FG=\dfrac{BD}{2}\left(2\right)\)

Từ (1) và (2) suy ra EH//FG và EH=FG

hay EHGF là hình bình hành

11 tháng 10 2021

Xét ΔNAB có 

F là trung điểm của NB

M là trung điểm của AB

Do đó: FM là đường trung bình của ΔNAB

Suy ra: FM//EN và FM=EN

Xét ΔMDC có

N là trung điểm của DC

G là trung điểm của MC

Do đó: NG là đường trung bình của ΔMDC

Suy ra: NG//MH và NG=MH

Xét tứ giác FMEN có 

FM//EN

FM=EN

Do đó: FMEN là hình bình hành

Suy ra: Hai đường chéo EF và MN cắt nhau tại trung điểm của mỗi đường(1)

Xét tứ giác MGNH có 

NG//MH

NG=MH

Do đó: MGNH là hình bình hành

Suy ra: Hai đường chéo MN và GH cắt nhau tại trung điểm của mỗi đường(2)

Từ (1) và (2) suy ra MN,EF,GH đồng quy

13 tháng 3 2020
Mk chỉ biết đầu tiên là chứng minh tứ giác MGNH và MFNE là hình bình hành chng đường chéo MN nên EF, GH, MN đồng quy, có gì các bn lập luận giúp mk nhé
HQ
Hà Quang Minh
Giáo viên
8 tháng 9 2023

a) Vì \(ABCD\) là hình bình hành (gt)
Suy ra \(AB\) // \(CD\), \(AD\) // \(BC\); \(AB = CD\); \(AD = BC\)
Mà \(IA = IB = \frac{{AB}}{2}\); \(KD = KC = \frac{{CD}}{2}\) (do \(I\),\(K\) là trung điểm)
Suy ra \(IA = IB = KD = KC\)
Xét tứ giác \(AKCI\) có:
\(AI = KC\) (cmt)
\(AI\) // \(KC\)
Suy ra \(AKCI\) là hình bình hành
Suy ra \(IC\) // \(AK\)
Hay \(IF\) // \(AE\)
Suy ra \(AEFI\) là hình thang
b) Vì \(ABCD\), \(AKCI\) là hình bình hành (gt)
Suy ra \(O\) là trung điểm của \(AC\), \(BD\), \(KI\)
Suy ra \(OD = OB = \frac{1}{2}BD\) (1)
Xét tam giác \(ADC\) có hai trung tuyến \(AK\), \(DO\) cắt nhau tại \(E\)
Suy ra \(E\) là trọng tâm của tam giác
Suy ra \(ED = \frac{2}{3}DO\) (2)
Chứng minh tương tự ta có \(BF = \frac{2}{3}BO\) (3)
Từ (1), (2), (3) suy ra \(ED = BF = \frac{1}{3}BD\)
Suy ra \({\rm{EF}} = \frac{1}{3}BD\)
Vậy \(DE = EF = FB\)